Acta Parasitologica

, Volume 58, Issue 3, pp 376–383 | Cite as

Ancylostoma ceylanicum metalloprotease 6 DNA vaccination induces partial protection against hookworm challenge infection

  • Marcin Wiśniewski
  • Sławomir Jaros
  • Piotr Bąska
  • Michael Cappello
  • Halina Wędrychowicz
Original Paper


Hookworms are blood feeding intestinal nematodes that infect more than 500 million people and cause iron deficiency anemia. Infected children suffer from physical and cognitive growth retardation. Because of potential anthelminthic drug resistance, the need for vaccine development is urgent. Numerous antigens have been tested in animal models as vaccines against hookworm infection, but there is no effective human vaccine. We cloned a cDNA encoding Ancylostoma ceylanicum metalloprotease 6 (Acemep-6). Ace-MEP-6 is a protein with a predicted molecular mass of 101.87 kDa and based on computational analysis it is very likely to be engaged in food processing via hemoglobin digestion. Groups of hamsters were immunized with an Ace-mep-6 cDNA vaccine, either once or three times. Animals that were administered one dose developed high resistance (80%, p < 0.01) against challenge infection, whereas triple immunization resulted in no worm burden reduction. These results suggest that DNA vaccines can be powerful tools in ancylostomiasis control, although the mechanisms through which protection is conferred remain unclear.


Hookworm Ancylostoma metalloprotease DNA vaccination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdulhaqq S.A., Weiner D.B. 2008. DNA vaccines: developing new strategies to enhance immune responses. Immunologic Research, 42, 219–232. DOI: 10.1007/s12026-008-8076-3.PubMedCrossRefGoogle Scholar
  2. Albonico M., Bickle Q., Ramsan M., Montresor A., Savioli L., Taylor M. 2003. Efficiency of mebendazole and levamisole alone or in combination against intestinal nematode infections after repeated targeted mebendazole treatment in Zanzibar. Bulletin of the World Health Organization, 81, 343–352.PubMedGoogle Scholar
  3. Albonico M., Smith P.G., Ercole E., Hall A., Chwaya H.M., Alawi K.S., Savioli L. 1995. Rate of reinfection with intestinal nematodes after treatment of children with mebendazole or albendazole in a highly endemic area. Transactions of the Royal Society of Tropical Medicine and Hygiene, 89, 538–541.PubMedCrossRefGoogle Scholar
  4. Bąska P., Wiśniewski M., Krzyżowska M., Długosz E., Zygner W., Górski P., Wędrychowicz H. 2013. Molecular cloning and characterisation of in vitro immune response against astacinlike metalloprotease Ace-MTP-2 from Ancylostoma ceylanicum. Experimental Parasitology, 133, 472–482. DOI: 10.1016/j.exppara.2013.01.006.Epub 2013 Jan 29.PubMedCrossRefGoogle Scholar
  5. Bethony J., Brooker S., Albonico M., Geiger S.M., Loukas A., Diemert D., Hotez P.J. 2006. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet, 367, 1521–1532. DOI: 10.1016/S0140-6736(06)68653-4.PubMedCrossRefGoogle Scholar
  6. Bethony J.M., Cole R.N., Guo X., Kamhawi S., Lightowlers M.W., Loukas A., Petri W., Reed S., Valenzuela J.G, Hotez P.J. 2011. Vaccines to combat the neglected tropical diseases. Immunological Reviews, 239, 237–270. DOI: 10.1111/j.1600-065X.2010.00976.x.PubMedCrossRefGoogle Scholar
  7. Brooker S., Bethony J., Hotez P.J. 2004. Human hookworm infection in the 21st century. Advances in Parasitology, 58, 197–288. DOI: 10.1016/S0065-308X(04)58004-1.PubMedCrossRefGoogle Scholar
  8. Bungiro R., Cappello M. 2004. Hookworm infection: new developments and prospects for control. Current Opinion in Infectious Diseases, 17, 421–426.PubMedCrossRefGoogle Scholar
  9. Feng J., Zhan B., Liu Y., Liu S., Williamson A., Goud G., Loukas A., Hotez P. 2007. Molecular cloning and characterization of Ac-MTP-2, an astacin-like metalloprotease released by adult Ancylostoma caninum. Molecular and Biochemical Parasitology, 152,132–138.PubMedCrossRefGoogle Scholar
  10. Fujiwara R.T., Geiger S.M., Bethony J., Mendez S. 2006. Comparative immunology of human and animal models of hookworm infection. Parasite Immunology, 28, 285–293. DOI: 10.1111/j.1365-3024.2006.00821.x.PubMedCrossRefGoogle Scholar
  11. Fujiwara R.T., Loukas A., Mendez S., Williamson A.L., Bueno L.L., Wang Y., Samuel A., Zhan B., Bottazzi M.E., Hotez P.J., Bethony J.M. 2006a. Vaccination with irradiated Ancylostoma caninum third stage larvae induces a Th2 protective response in dogs. Vaccine, 24, 501–509. DOI: 10.1016/j.vaccine.2005.07.091.PubMedCrossRefGoogle Scholar
  12. Hiszczyńska-Sawicka E., Li H., Xu J.B., Oledzka G., Kur J., Bickerstaffe R., Stankiewicz M. 2010. Comparison of immune response in sheep immunized with DNA vaccine encoding Toxoplasma gondii GRA7 antigen in different adjuvant formulations. Experimental Parasitology, 124, 365–372. DOI: 10.1016/j.exppara.2009.11.015.PubMedCrossRefGoogle Scholar
  13. Hotez P.J., Ashcom J., Zhan B., Bethony J., Loukas A., Hawdon J., Wang Y., Jin Q., Jones K.C., Dobardzic A., Dobardzic R., Bolden J., Essiet I., Brandt W., Russell P.K., Zook B.C., Howard B., Chacon M. 2003. Effect of vaccination with a recombinant fusion protein encoding an astacin like metalloprotease (MTP-1) secreted by host-stimulated Ancylostoma caninum third-stage infective larvae. Journal of Parasitology, 89, 853–855.PubMedCrossRefGoogle Scholar
  14. Hotez P.J., Brooker S., Bethony J.M., Bottazzi M.E., Loukas A., Xiao S. 2004. Hookworm infection. New England Journal of Medicine, 351, 799–807.PubMedCrossRefGoogle Scholar
  15. Hotez P.J., Zhan B., Bethony J.M., Loukas A., Williamson A., Goud G.N., Hawdon J.M., Dobardzic A., Dobardzic R., Ghosh K., Bottazzi M.E., Mendez S., Zook B., Wang Y., Liu S., Essiet-Gibson I., Chung-Debose S., Xiao S., Knox D., Meagher M., Inan M., Correa-Oliveira R., Vilk P., Shepherd H.R., Brandt W., Russell P.K. 2003. Progress in the development of a recombinant vaccine for human hookworm disease: the Human Hookworm Vaccine Initiative. International Journal for Parasitology, 33, 1245–1258. DOI: 10.1016/S0020-7519(03) 00158-9.PubMedCrossRefGoogle Scholar
  16. Humphries D., Mosites E., Otchere J., Twum W.A., Woo L., Jones-Sanpei H., Harrison L.M., Bungiro R.D., Benham-Pyle B., Bimi L., Edoh D., Bosompem K., Wilson M., Cappello M. Epidemiology of hookworm infection in Kintampo North Municipality, Ghana: patterns of malaria coinfection, anemia, and albendazole treatment failure. American Journal of Tropical Medicine and Hygiene, 84, 792–800. DOI: 10.4269/ajtmh.2011.11-0003.Google Scholar
  17. Humphries D, Nguyen S, Boakye D, Wilson M, Cappello M. 2012. The promise and pitfalls of mass drug administration to control intestinal helminth infections. Current Opinion in Infectious Diseases, 25, 584–589. DOI: 10.1097/QCO.0b013e328357e4cf.PubMedCrossRefGoogle Scholar
  18. Jones B.F., Hotez P.J. 2002. Molecular cloning and characterization of Ac-mep-1, a developmentally regulated gut luminal metal loendopeptidase from adult Ancylostoma caninum hookworms. Molecular and Biochemical Parasitology, 119, 107–116. DOI: 10.1016/S0166-6851(01)00409-1.PubMedCrossRefGoogle Scholar
  19. Loukas A., Bethony J.M., Mendez S., Fujiwara R.T., Goud G.N., Ranjit N., Zhan B., Jones K., Bottazzi M.E., Hotez P.J. 2005. Vaccination with Recombinant Aspartic Hemoglobinase Reduces Parasite Load and Blood Loss after Hookworm Infection in Dogs. PLoS Medicine, 2(10), e295. DOI:10.1371/journal.pmed.0020295.PubMedCrossRefGoogle Scholar
  20. Mendez S., Zhan B., Goud G., Ghosh K., Dobardzic A., Wu W., Liu S., Deumic V., Dobardzic R., Liu Y., Bethony J., Hotez P.J. 2005 Effect of combining the larval antigens Ancylostoma secreted protein 2 (ASP-2) and metalloprotease 1 (MTP-1) in protecting hamsters against hookworm infection and disease caused by Ancylostoma ceylanicum. Vaccine, 23,(24), 3123–3130.PubMedCrossRefGoogle Scholar
  21. Miller T.A. 1978. Industrial development and field use of the canine hookworm vaccine. Advances in Parasitology, 16, 333–342.PubMedCrossRefGoogle Scholar
  22. Ngui R., Lim Y.A., Traub R., Mahmud R., Mistam M.S. 2012. Epidemiological and genetic data supporting the transmission of Ancylostoma ceylanicum among human and domestic animals. PLOS Neglected Tropical Diseases, 6, e1522. DOI: 10.1371/journal.pntd.0001522.PubMedCrossRefGoogle Scholar
  23. Pawlowski Z.S., Schad G.A, Stott G.J. 1991. Hookworm Infection and Anemia. Approaches to Prevention and Control. Geneva, World Health Organization.Google Scholar
  24. Pearson M.S., Bethony J.M., Pickering D.A., de Oliveira L.M., Jariwala A., Santiago H., Miles A.P., Zhan B., Jiang D., Ranjit N., Mulvenna J., Tribolet L., Plieskatt J., Smith T., Bottazzi M.E., Jones K., Keegan B., Hotez P.J., Loukas A. 2009. An enzymatically inactivated hemoglobinase from Necator americanus induces neutralizing antibodies against multiple hookworm species and protects dogs against heterologous hookworm infection. FASEB Journal, 23, 3007–3019. DOI: 10.1096/fj.09-131433.PubMedCrossRefGoogle Scholar
  25. Pearson M.S, Pickering D.A, Tribolet L., Cooper L., Mulvenna J., Oliveira L.M., Bethony J.M., Hotez P.J., Loukas A. 2010. Neutralizing antibodies to the hookworm hemoglobinase Na-APR-1: implications for a multivalent vaccine against hookworm infection and schistosomiasis. Journal of Infectious Diseases, 15; 201, 1561–1569. DOI: 10.1086/651953.CrossRefGoogle Scholar
  26. Quinnell R.J., Pritchard D.I., Raiko A., Brown A.P., Shaw M.A. 2004. Immune responses in human necatoriasis: association between interleukin-5 responses and resistance to reinfection. Journal of Infectious Diseases, 190, 430–438. DOI: 10.1086/422256.PubMedCrossRefGoogle Scholar
  27. Ranjit N., Zhan B., Hamilton B., Stenzel D., Lowther J., Pearson M., Gorman J., Hotez P., Loukas A. 2009. Proteolytic degradation of hemoglobin in the intestine of the human hookworm Necator americanus. Journal of Infectious Diseases, 15, 199(6), 904–912. DOI:10.1086/597048.CrossRefGoogle Scholar
  28. Redmond D.L., Knox D.P., Newlands G., Smith W.D. 1997. Molecular cloning and characterisation of a developmentally regulated putative metallopeptidase present in a host protective extract of Haemonchus contortus. Molecular and Biochemical Parasitology, 85, 77–87. DOI: 10.1016/S0166-6851(96) 02812-5.PubMedCrossRefGoogle Scholar
  29. Wasyl K., Zawistowska-Deniziak A., Bąska P., Wędrychowicz H., Wiśniewski M. 2013. Molecular cloning and expression of the cDNA sequence encoding a novel aspartic protease from Uncinaria stenocephala. Experimental Parasitology, 134, 220–227. DOI: 10.1016/j.exppara.2013.03.PubMedCrossRefGoogle Scholar
  30. Wędrychowicz H., Wisniewski M. 2003. Progress in development of vaccines against most important gastrointestinal helminth parasites of humans and animals. Acta Parasitologica, 48, 239–245.Google Scholar
  31. Williamson A.L., Lecchi P., Turk B.E., Choe Y., Hotez P.J., McKerrow J.H., Cantley L.C., Sajid M., Craik C.S., Loukas A. 2004. A multi-enzyme cascade of hemoglobin proteolysis in the intestine of blood-feeding hookworms. Journal of Biological Chemistry, 20; 279(34), 35950–35957. DOI: 10.1074/jbc.M40 5842200.PubMedCrossRefGoogle Scholar
  32. Wu S., Zhang Y. LOMETS: A local meta-threading-server for protein structure prediction. 2007. Nucleic Acids Research, 35, 3375–3382. DOI: 10.1093/nar/gkm251.PubMedCrossRefGoogle Scholar
  33. Xiao S, Zhan B, Xue J, Goud GN, Loukas A, Liu Y, Williamson A, Liu S, Deumic V, Hotez P. 2008. The evaluation of recombinant hookworm antigens as vaccines in hamsters (Mesocricetus auratus) challenged with human hookworm, Necator americanus. Experimental Parasitology, 118, 32–40. DOI: 10.1016/j.bbr.2011.03.031.PubMedCrossRefGoogle Scholar
  34. Zhan B., Hotez P.J., Wang Y., Hawdon J.M. 2002. A developmentally regulated metalloprotease secreted by host-stimulated Ancylostoma caninum third-stage infective larvae is a member of the astacin family of proteases. Molecular and Biochemical Parasitology, 9, 120(2), 291–296.CrossRefGoogle Scholar
  35. Zhan B., Santiago H., Keegan B., Gillespie P., Xue J., Bethony J., de Oliveira L.M., Jiang D., Diemert D., Xiao S.H., Jones K., Feng X., Hotez P.J., Bottazzi M.E. 2012. Fusion of Na-ASP-2 with human immunoglobulin Fcγ abrogates histamine release from basophils sensitized with anti-Na-ASP-2 IgE. Parasite Immunology, 34, 404–411. DOI: 10.1111/j.1365-3024.2012.01371.x.PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Marcin Wiśniewski
    • 1
  • Sławomir Jaros
    • 1
    • 2
  • Piotr Bąska
    • 3
  • Michael Cappello
    • 4
  • Halina Wędrychowicz
    • 1
    • 5
  1. 1.Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Faculty of Veterinary MedicineWarsaw University of Life SciencesWarsawPoland
  2. 2.Laboratory of Molecular Biology, Mabion Ltd.ŁódzPoland
  3. 3.Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Faculty of Veterinary MedicineWarsaw University of Life SciencesWarsawPoland
  4. 4.Program in International Child Health, Departments of Pediatrics, Microbial Pathogenesis, and Public HealthYale University School of MedicineNew HavenUSA
  5. 5.Laboratory of Molecular ParasitologyW. Stefański Institute of Parasitology PASWarsawPoland

Personalised recommendations