Acta Parasitologica

, Volume 58, Issue 1, pp 105–111 | Cite as

A new genus of the family Hymenolepididae (Cestoda) from Sephanoides sephaniodes (Apodiformes, Trochilidae) in Northern Patagonia (Chile)

  • Vincent C. Widmer
  • Boyko B. Georgiev
  • Jean Mariaux
Original Paper

Abstract

A new species of hymenolepidid cestodes from Sephanoides sephaniodes (Trochilidae) found in Chile is described. The most characteristic features of Colibrilepis pusilla gen. nov., sp. nov. are the lack of rostellum, a cirrus sac with a thick-walled distal end (separated by a constriction) and protruding into genital atrium, a thick-walled saccular uterus filling entire median field of the gravid proglottis and the small number of eggs containing thick walled embryophores with polar swellings. Staphylepis is the most similar genus but differs in its apical structure because of the presence of a rudimentary rostellum. Moreover, molecular phylogenetic analyses show that Staphylepis and Colibrilepis are not sister taxa.

Keywords

Hymenolepididae Hymenolepidinae Cestoda Sephanoides sephaniodes Chile 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker S.C., Blair D., Garrett A.R., Cribb T.H. 1993. Utility of the D1 domain of nuclear 28S rRNA for phylogenetic inference in the Digenea. Systematic Parasitology, 26, 181–188. DOI: 10.1007/BF00009725.CrossRefGoogle Scholar
  2. Czaplinski B., Vaucher C. 1994. Family Hymenolepididae Ariola, 1899. In: (Eds. Khalil L.F., Jones A., Bray R.A.) Keys to the cestode parasites of vertebrates. CAB International, Wallingford, 595–663.Google Scholar
  3. de Chambrier A., Coquille S.C., Mariaux J., Tkach V. 2009. Redescription of Testudotaenia testudo (Magath, 1924) (Eucestoda: Proteocephalidea), a parasite of Apalone spinifera (Le Sueur) (Reptilia: Trionychidae) and Amia calva L. (Pisces: Amiidae) in North America and erection of the Testudotaeniinae n. subfam. Systematic Parasitology, 73, 49–64.PubMedCrossRefGoogle Scholar
  4. Farris J.S., Källersj of incongruence. Cladistics, 10, 315–319.Google Scholar
  5. Gonzáles-Acuña D., Silva C., Soto M., Mironov S., Moreno L., González-Gómez P.L., Badrul H., Kinsella M. 2011. Parasites of the Green-backed Firecrown (Sephanoides sephaniodes) in Chile. Revista Mexicana de Biodiversidad, 82, 1333–1336.Google Scholar
  6. Griebel T., Brinkmeyer M., Bocker S. 2008. EPoS: a modular software framework for phylogenetics analysis. Bioinformatics, 24, 2399–2400. DOI: 10.1093/bioinformatics/btn364.PubMedCrossRefGoogle Scholar
  7. Helears R., Milinkovitch M.C. 2010. MetaPIGA v2.0: maximum likelihood large phylogeny estimation using the metapopulation genetic algorithm and other stochastic heuristics. BMC Bioinformatics, 11, 379–390. DOI: 10.1186/1471-2105-11-379.CrossRefGoogle Scholar
  8. Hillis D.M., Dixon M.T. 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Quarterly Review of Biology, 66, 411–453.PubMedCrossRefGoogle Scholar
  9. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins D.G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948. DOI: 10.1093/bioinformatics/btm404.PubMedCrossRefGoogle Scholar
  10. Lemmon A.R., Milinkovitch M.C. 2002. The metapopulation genetic algorithm: an efficient solution for the problem of large phylogeny estimation. PNAS, 99, 10516–10521.PubMedCrossRefGoogle Scholar
  11. Littlewood D.T.J., Waeschenbach A., Nikolov P.N. 2008. In search of mitochondrial markers for resolving the phylogeny of cyclophyllidean tapeworms (Plathyhelminthes, Cestoda) — a test study with Davaineidae. Acta Parasitologica, 53, 133–144. DOI: 10.2478/s11686-008-0029-4.CrossRefGoogle Scholar
  12. Mariaux J., Vaucher C. 1991. A new species of Staphylepis Spassky & Oshmarin, 1954 (Cestoda: Hymenolepididae) found in West African nectariniid birds. Revue Suisse de Zoologie, 98, 261–268.Google Scholar
  13. Rietschel P.E. 1934. Uber eine neue Hymenolepis aus einem Kolibri. Zugleich ein Beitrag zum Rechts-Links-Problem bei den Cestoden. Zoologischer Anzeiger, 105, 113–123.Google Scholar
  14. Ronquist F., Huelsenbeck J.P. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574. DOI: 10.1093/bioinformatics/btg180.PubMedCrossRefGoogle Scholar
  15. Schmidt G.D. 1986. CRC Handbook of tapeworm identification. CRC Press Inc., Boca Raton, Florida, 675 pp.Google Scholar
  16. Schmidt G.D., Dailey M.D. 1992. Amazilolepis trinidadensis gen n., sp. n. (Cestoidea: Hymenolepididae) from the Copper-rumped Hummingbird, Amazilia tobaci, in Trinidad, West Indies. Journal of the Helminthological Society of Washington, 59, 117–119.Google Scholar
  17. Swofford D.L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  18. Zehnder M.P., Mariaux J. 1999. Molecular systematic analysis of the order Proteocephalidea (Eucestoda) based on mitochondrial and nuclear sequences. International Journal for Parasitology, 29, 1841–1852.PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Vincent C. Widmer
    • 1
    • 3
  • Boyko B. Georgiev
    • 2
  • Jean Mariaux
    • 1
  1. 1.Department of InvertebratesNatural History Museum GenevaGeneva 6Switzerland
  2. 2.Institute of Biodiversity and Ecosystem ResearchBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Faculty of Sciences, Department of Genetics and EvolutionGeneva UniversityGeneva 4Switzerland

Personalised recommendations