Skip to main content

Advertisement

Log in

Cell phenotypic change due to Cryptosporidium parvum infection in immunocompetent mice

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Cryptosporidium parvum is an intracellular parasite causing enteritis which can become life-threatening in immunocompromised host. Immunoregulatory T cells play a central role in the regulatory network of the host. Here, we proposed to characterize the populations of immune cells during infection and reinfection with C. parvum. Four-week-old BALB/C mice were inoculated with oocysts of C. parvum at days 0 and 22. Fecal and blood samples, spleens, and small intestines were collected for analysis. Peripheral blood and spleen cell populations were characterized by flow cytometry. After infection (days 0 to 21), mice presented higher values of neutrophils, eosinophils, NK cells and CD4+CD25high T cells in peripheral blood. After reinfection, this upward trend continued in the following days for all four populations in infected mice. At day 35, infected mice presented similar values to the control group, except for CD4+CD25high T cells, which remained higher in infected mice. A possible correlation between alterations in blood and spleen cell populations was also studied, but no consistent association could be established. Small intestine sections were screened for intracellular stages of the parasite but no evidence of pathology was observed. Here, we report information which may be important for the understanding of the specific cell-mediated response in immunocompetent mice to C. parvum infection. Although some questions remain unanswered and complementary studies are needed, our results are expected to contribute to a better understanding of innate and Treg cells role in the clearance process of this parasite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguirre S.A., Mason P.H., Perryman L.E. 1994. Susceptibility of major histocompatibility complex (MHC) class I- and MHC class II-deficient mice to Cryptosporidium parvum infection. Infection and Immunity, 62, 697–699.

    PubMed  CAS  Google Scholar 

  • Alves M., Matos O., Antunes F. 2001. Multilocus PCR-RFLP analysis of Cryptosporidium isolates from HIV-infected patients from Portugal. Annals of Tropical Medicine and Parasitology, 95, 627–632.

    Article  PubMed  CAS  Google Scholar 

  • Alves M., Matos O., Spano F., Antunes F. 2000. PCR-RFLP analysis of Cryptosporidium parvum isolates from HIV-infected patients in Lisbon, Portugal. Annals of Tropical Medicine and Parasitology, 94, 291–297.

    Article  PubMed  CAS  Google Scholar 

  • Alves M., Xiao L., Sulaiman I., Lal A.A., Matos O., Antunes F. 2003. Subgenotype analysis of Cryptosporidium isolates from humans, cattle, and zoo ruminants in Portugal. Journal of Clinical Microbiology, 41, 2744–2747. DOI: 10.1128/JCM.41.6.2744-2747.2003.

    Article  PubMed  CAS  Google Scholar 

  • Baecher-Allan C., Wolf E., Hafler D.A. 2005. Functional analysis of highly defined, FACS-isolated populations of human regulatory CD4+ CD25+ T cells. Clinical Immunology, 115, 10–18. DOI: 10.1016/j.clim.2005.02.018.

    Article  PubMed  CAS  Google Scholar 

  • Banham A.H. 2006. Cell-surface IL-7 receptor expression facilitates the purification of FOXP3(+) regulatory Tcells. Trends in Immunology, 27, 541–544. DOI: 10.1016/j.it.2006.10.002.

    Article  PubMed  CAS  Google Scholar 

  • Belkaid Y., Tarbell K. 2009. Regulatory T cells in the control of hostmicroorganism interactions. Annual Review of Immunology, 27, 551–589. DOI: 10.1146/annurev.immunol.021908.132723.

    Article  PubMed  CAS  Google Scholar 

  • Blanshard C., Jackson A.M., Shanson D.C., Francis N., Gazzard B.G. 1992. Cryptosporidiosis in HIV-seropositive patients. Quarterly Journal of Medicine, 85, 813–823.

    PubMed  CAS  Google Scholar 

  • Borad A., Ward H. 2010. Human immune responses in cryptosporidiosis. Future Microbiology, 5, 507–519. DOI: 10.2217/fmb.09.128.

    Article  PubMed  CAS  Google Scholar 

  • Borrego L.M., Arroz M.J., Videira P., Martins C., Guimarães H., Nunes G., Papoila A.L., Trindade H. 2009. Regulatory cells, cytokine pattern and clinical risk factors for asthma in infants and young children with recurrent wheeze. Clinical and Experimental Allergy, 39, 1160–1169. DOI: 10.1111/j.1365-2222.2009.03253.x.

    Article  PubMed  CAS  Google Scholar 

  • Casemore D.P., Armstrong M., Sands R.L. 1985. Laboratory diagnosis of cryptosporidiosis. Journal of Clinical Pathology, 38, 1337–341.

    Article  PubMed  CAS  Google Scholar 

  • Certad G., Ngouanesavanh T., Guyot K., Gantois N., Chassat T., Mouray A., Fleurisse L., Pinon A., Cailliez J.C., Dei-Cas E., Creusy C. 2007. Cryptosporidium parvum, a potential cause of colic adenocarcinoma. Infectious Agents and Cancer, 21, 2–22. DOI: 10.1186/1750-9378-2-22.

    Google Scholar 

  • Current W.L., Garcia L.S. 1991. Cryptosporidiosis. Clinical Microbiology Reviews, 4, 325–358.

    PubMed  CAS  Google Scholar 

  • Del Coco V.F., Córdoba M.A., Sidoti A., Santín M., Drut R., Basualdo J.A. 2012. Experimental infection with Cryptosporidium parvum IIaA21G1R1 subtype in immunosuppressed mice. Veterinary Parasitology, http://dx.doi.org/10.1016/j.vetpar.2012.06.033.

  • Fayer R., Morgan U., Upton S.J. 2000. Epidemiology of Cryptosporidium: transmission, detection and identification. International Journal for Parasitology, 30, 1305–1322. DOI: 10.1016/S0020-7519(00)00135-1.

    Article  PubMed  CAS  Google Scholar 

  • Fayer R., Ungar B.L. 1986. Cryptosporidium spp. and Cryptosporidiosis. Microbiological Reviews, 50, 458–483.

    PubMed  CAS  Google Scholar 

  • Fontenot J.D., Gavin M.A., Rudensky A.Y. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunology, 4, 330–336. DOI: 10.1038/ni904.

    Article  PubMed  CAS  Google Scholar 

  • Glaberman S., Moore J.E., Lowery C.J., Chalmers R.M., Sulaiman I., Elwin K., Rooney P.J., Millar B.C., Dooley J.S., Lal A.A., Xiao L. 2002. Three drinking-water-associated cryptosporidiosis outbreaks, Northern Ireland. Emerging Infectious Diseases, 8, 631–633. DOI: 10.3201/eid0806.010368.

    Article  PubMed  Google Scholar 

  • Gomez Morales M.A., Mele R., Ludovisi A., Bruschi F., Tosini F., Pozio E. 2004. Cryptosporidium parvum-specific CD4 Th1 cells from sensitized donors responding to both fractionated and recombinant antigenic proteins. Infection and Immunity, 72, 1306–1310. DOI: 10.1128/IAI.72.3.1306-1310.2004.

    Article  PubMed  Google Scholar 

  • Kapel N., Benhamou Y., Buraud M., Magne D., Opolon O., Gobert J.G. 1996. Kinetics of mucosal ileal gamma-interferon response during cryptosporidiosis in immunocompetent neonatal mice. Parasitology Research, 82, 664–667. DOI: 10.1007/s004360050182.

    Article  PubMed  CAS  Google Scholar 

  • Kasper L.H., Buzoni-Gatel D. 2001. Ups and downs of mucosal cellular immunity against protozoan parasites. Infection and Immunity, 69, 1–8. DOI: 10.1128/IAI.69.1.1-8.2001.

    Article  PubMed  CAS  Google Scholar 

  • Lean I.S., McDonald V., Pollok R.C. 2002. The role of cytokines in the pathogenesis of Cryptosporidium infection. Current Opinion in Infectious Diseases, 15, 229–234.

    Article  PubMed  CAS  Google Scholar 

  • Levings M.K., Allan S., d’Hennezel E., Piccirillo C.A. 2006. Functional dynamics of naturally occurring regulatory T cells in health and autoimmunity. Advances in Immunology, 92, 119–155. DOI: 10.1016/S0065-2776(06)92003-3.

    Article  PubMed  CAS  Google Scholar 

  • Liu W., Putnam A.L., Xu-Yu Z., Szot G.L., Lee M.R., Zhu S., Gottlieb P.A., Kapranov P., Gingeras T.R., Fazekas de St Groth B., Clayberger C., Soper D.M., Ziegler S.F., Bluestone J.A. 2006. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ Treg cells. Journal of Experimental Medicine, 203, 1701–1711. DOI: 10.1084/jem.20060772.

    Article  PubMed  CAS  Google Scholar 

  • Mac Kenzie W.R., Hoxie N.J., Proctor M.E., Gradus M.S., Blair K.A., Peterson D.E., Kazmierczak J.J., Addiss D.G., Fox K.R., Rose J.B., Davis J.P. 1994. A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply. New England Journal of Medicine, 331, 161–167.

    Article  PubMed  CAS  Google Scholar 

  • Male D., Brostoff J., Roth D.B., Roitt I. 2006. Immunity to protozoa and worms. In: (Ed. Mosby Elservier) Immunology. 7th. Canada, 277–297.

  • Maloy K.J., Powrie F. 2001. Regulatory T cells in the control of immune pathology. Nature Immunology, 2, 816–822. DOI: 10.1038/ni0901-816.

    Article  PubMed  CAS  Google Scholar 

  • Mariotte D., Comby E., Brasseur P., Ballet J.J. 2004. Kinetics of spleen and Peyer’s patch lymphocyte populations during gut parasite clearing in Cryptosporidium parvum infected suckling mice. Parasite Immunology, 26, 1–6. DOI: 10.1111/j.0141-9838.2004.00676.x.

    Article  PubMed  CAS  Google Scholar 

  • Matos O., Alves M., Xiao L., Cama V., Antunes F. 2004. Cryptosporidium felis and C. meleagridis in persons with HIV, Portugal. Emerging Infectious Diseases, 10, 2256–2257.

    Article  PubMed  Google Scholar 

  • McDonald V. 2000. Host cell-mediated responses to infection with Cryptosporidium. Parasite Immunology, 22, 597–604. DOI: 10.1046/j.1365-3024.2000.00343.x.

    Article  PubMed  CAS  Google Scholar 

  • McDonald V., Bancroft G.J. 1994. Mechanisms of innate and acquired resistance to Cryptosporidium parvum infection in SCID mice. Parasite Immunology, 16, 315–320.

    Article  PubMed  CAS  Google Scholar 

  • McDonald V., Deer R., Uni S., Iseki M., Bancroft G.J. 1992. Immune responses to Cryptosporidium muris and Cryptosporidium parvum in adult immunocompetent or immunocompromised (nude and SCID) mice. Infection and Immunity, 60, 3325–3331.

    PubMed  CAS  Google Scholar 

  • Miller T.A., Schaefer F.W.3rd. 2007. Characterization of a Cryptosporidium muris infection and reinfection in CF-1 mice. Veterinary Parasitology, 144, 208–221. DOI: 10.1016/j.vetpar.2006.10.026.

    Article  PubMed  CAS  Google Scholar 

  • O’Garra A., Vieira P. 2004. Regulatory T cells and mechanisms of immune system control. Nature Medicine, 10, 801–805. DOI: 10.1038/nm0804-801.

    Article  PubMed  Google Scholar 

  • Perryman L.E., Mason P.H., Chrisp C.E. 1994. Effect of spleen cell populations on resolution of Cryptosporidium parvum infection in SCID mice. Infection and Immunity, 62, 1474–1477.

    PubMed  CAS  Google Scholar 

  • Petry F., Jakobi V., Tessema T.S. 2010. Host immune response to Cryptosporidium parvum infection. Experimental Parasitology, 126, 304–309. DOI: 10.1016/j.exppara.2010.05.022.

    Article  PubMed  CAS  Google Scholar 

  • Pinchuk L.M., Filipov N.M. 2008. Differential effects of age on circulating and splenic leukocyte populations in C57BL/6 and BALB/c male mice. Immunity and Ageing, 11, 5–11. DOI: 10.1186/1742-4933-5-1.

    Google Scholar 

  • Riggs M.W. 2002. Recent advances in cryptosporidiosis: the immune response. Microbes and Infection, 4, 1067–1080. DOI: 10.1016/S1286-4579(02)01631-3.

    Article  PubMed  CAS  Google Scholar 

  • Theodos C.M. 1998. Innate and cell-mediated immune responses to Cryptosporidium parvum. Advances in Parasitology, 40, 87–119.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K., Mwinzi P.N, Black C.L, Muok E.M, Karanja D.M, Secor W.E., Colley D.G. 2007. T regulatory cell levels decrease in people infected with Schistosoma mansoni on effective treatment. American Journal of Tropical Medicine and Hygiene, 77, 676–682.

    PubMed  Google Scholar 

  • Waters W.R., Harp J.A. 1996. Cryptosporidium parvum infection in T-cell receptor (TCR)-α- and TCR-δ-deficient mice. Infection and Immunity, 64, 1854–1857.

    PubMed  CAS  Google Scholar 

  • Wyatt C.R., Brackett E.J, Perryman L.E., Rice-Ficht A.C., Brown W.C., O’Rourke K.I. 1997. Activation of intestinal intraepithelial T lymphocytes in calves infected with Cryptosporidium parvum. Infection and Immunity, 65, 185–190.

    PubMed  CAS  Google Scholar 

  • Xiao L., Alderisio K.A., Jiang J. 2006. Detection of Cryptosporidium oocysts in water: effect of the number of samples and analytic replicates on test results. Applied and Environmental Microbiology, 72, 5942–947. DOI: 10.1128/AEM.00927-06.

    Article  PubMed  CAS  Google Scholar 

  • Xiao L., Fayer R. 2008. Molecular characterization of species and genotypes of Cryptosporidium and Giardia and assessment of zoonotic transmission. International Journal for Parasitology, 38, 1239–1255. DOI: 10.1016/j.ijpara.2008.03.006.

    Article  PubMed  CAS  Google Scholar 

  • Xiao L., Feng Y. 2008. Zoonotic cryptosporidiosis. FEMS Immunology and Medical Microbiology, 52, 309–323. DOI: 10.1111/j.1574-695X.2008.00377.x.

    Article  PubMed  CAS  Google Scholar 

  • Xiao L., Ryan U.M. 2008. Molecular epidemiology. In: (Eds. R. Fayer and L. Xiao) Cryptosporidium and Cryptosporidiosis. CRC Press and IWA Publishing, Boca Raton, FL, 119–171.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Matos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Codices, V., Martins, C., Novo, C. et al. Cell phenotypic change due to Cryptosporidium parvum infection in immunocompetent mice. Acta Parasit. 58, 70–79 (2013). https://doi.org/10.2478/s11686-013-0113-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11686-013-0113-2

Keywords

Navigation