Acta Parasitologica

, Volume 58, Issue 1, pp 70–79 | Cite as

Cell phenotypic change due to Cryptosporidium parvum infection in immunocompetent mice

  • Vera Codices
  • Catarina Martins
  • Carlos Novo
  • Mário Pinho
  • Bruno de Sousa
  • Ângela Lopes
  • Miguel Borrego
  • Olga Matos
Original Paper
  • 168 Downloads

Abstract

Cryptosporidium parvum is an intracellular parasite causing enteritis which can become life-threatening in immunocompromised host. Immunoregulatory T cells play a central role in the regulatory network of the host. Here, we proposed to characterize the populations of immune cells during infection and reinfection with C. parvum. Four-week-old BALB/C mice were inoculated with oocysts of C. parvum at days 0 and 22. Fecal and blood samples, spleens, and small intestines were collected for analysis. Peripheral blood and spleen cell populations were characterized by flow cytometry. After infection (days 0 to 21), mice presented higher values of neutrophils, eosinophils, NK cells and CD4+CD25high T cells in peripheral blood. After reinfection, this upward trend continued in the following days for all four populations in infected mice. At day 35, infected mice presented similar values to the control group, except for CD4+CD25high T cells, which remained higher in infected mice. A possible correlation between alterations in blood and spleen cell populations was also studied, but no consistent association could be established. Small intestine sections were screened for intracellular stages of the parasite but no evidence of pathology was observed. Here, we report information which may be important for the understanding of the specific cell-mediated response in immunocompetent mice to C. parvum infection. Although some questions remain unanswered and complementary studies are needed, our results are expected to contribute to a better understanding of innate and Treg cells role in the clearance process of this parasite.

Keywords

Cryptosporidium immunophenotype flow cytometry B-lymphocytes T-lymphocytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguirre S.A., Mason P.H., Perryman L.E. 1994. Susceptibility of major histocompatibility complex (MHC) class I- and MHC class II-deficient mice to Cryptosporidium parvum infection. Infection and Immunity, 62, 697–699.PubMedGoogle Scholar
  2. Alves M., Matos O., Antunes F. 2001. Multilocus PCR-RFLP analysis of Cryptosporidium isolates from HIV-infected patients from Portugal. Annals of Tropical Medicine and Parasitology, 95, 627–632.PubMedCrossRefGoogle Scholar
  3. Alves M., Matos O., Spano F., Antunes F. 2000. PCR-RFLP analysis of Cryptosporidium parvum isolates from HIV-infected patients in Lisbon, Portugal. Annals of Tropical Medicine and Parasitology, 94, 291–297.PubMedCrossRefGoogle Scholar
  4. Alves M., Xiao L., Sulaiman I., Lal A.A., Matos O., Antunes F. 2003. Subgenotype analysis of Cryptosporidium isolates from humans, cattle, and zoo ruminants in Portugal. Journal of Clinical Microbiology, 41, 2744–2747. DOI: 10.1128/JCM.41.6.2744-2747.2003.PubMedCrossRefGoogle Scholar
  5. Baecher-Allan C., Wolf E., Hafler D.A. 2005. Functional analysis of highly defined, FACS-isolated populations of human regulatory CD4+ CD25+ T cells. Clinical Immunology, 115, 10–18. DOI: 10.1016/j.clim.2005.02.018.PubMedCrossRefGoogle Scholar
  6. Banham A.H. 2006. Cell-surface IL-7 receptor expression facilitates the purification of FOXP3(+) regulatory Tcells. Trends in Immunology, 27, 541–544. DOI: 10.1016/j.it.2006.10.002.PubMedCrossRefGoogle Scholar
  7. Belkaid Y., Tarbell K. 2009. Regulatory T cells in the control of hostmicroorganism interactions. Annual Review of Immunology, 27, 551–589. DOI: 10.1146/annurev.immunol.021908.132723.PubMedCrossRefGoogle Scholar
  8. Blanshard C., Jackson A.M., Shanson D.C., Francis N., Gazzard B.G. 1992. Cryptosporidiosis in HIV-seropositive patients. Quarterly Journal of Medicine, 85, 813–823.PubMedGoogle Scholar
  9. Borad A., Ward H. 2010. Human immune responses in cryptosporidiosis. Future Microbiology, 5, 507–519. DOI: 10.2217/fmb.09.128.PubMedCrossRefGoogle Scholar
  10. Borrego L.M., Arroz M.J., Videira P., Martins C., Guimarães H., Nunes G., Papoila A.L., Trindade H. 2009. Regulatory cells, cytokine pattern and clinical risk factors for asthma in infants and young children with recurrent wheeze. Clinical and Experimental Allergy, 39, 1160–1169. DOI: 10.1111/j.1365-2222.2009.03253.x.PubMedCrossRefGoogle Scholar
  11. Casemore D.P., Armstrong M., Sands R.L. 1985. Laboratory diagnosis of cryptosporidiosis. Journal of Clinical Pathology, 38, 1337–341.PubMedCrossRefGoogle Scholar
  12. Certad G., Ngouanesavanh T., Guyot K., Gantois N., Chassat T., Mouray A., Fleurisse L., Pinon A., Cailliez J.C., Dei-Cas E., Creusy C. 2007. Cryptosporidium parvum, a potential cause of colic adenocarcinoma. Infectious Agents and Cancer, 21, 2–22. DOI: 10.1186/1750-9378-2-22.Google Scholar
  13. Current W.L., Garcia L.S. 1991. Cryptosporidiosis. Clinical Microbiology Reviews, 4, 325–358.PubMedGoogle Scholar
  14. Del Coco V.F., Córdoba M.A., Sidoti A., Santín M., Drut R., Basualdo J.A. 2012. Experimental infection with Cryptosporidium parvum IIaA21G1R1 subtype in immunosuppressed mice. Veterinary Parasitology, http://dx.doi.org/10.1016/j.vetpar.2012.06.033.
  15. Fayer R., Morgan U., Upton S.J. 2000. Epidemiology of Cryptosporidium: transmission, detection and identification. International Journal for Parasitology, 30, 1305–1322. DOI: 10.1016/S0020-7519(00)00135-1.PubMedCrossRefGoogle Scholar
  16. Fayer R., Ungar B.L. 1986. Cryptosporidium spp. and Cryptosporidiosis. Microbiological Reviews, 50, 458–483.PubMedGoogle Scholar
  17. Fontenot J.D., Gavin M.A., Rudensky A.Y. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunology, 4, 330–336. DOI: 10.1038/ni904.PubMedCrossRefGoogle Scholar
  18. Glaberman S., Moore J.E., Lowery C.J., Chalmers R.M., Sulaiman I., Elwin K., Rooney P.J., Millar B.C., Dooley J.S., Lal A.A., Xiao L. 2002. Three drinking-water-associated cryptosporidiosis outbreaks, Northern Ireland. Emerging Infectious Diseases, 8, 631–633. DOI: 10.3201/eid0806.010368.PubMedCrossRefGoogle Scholar
  19. Gomez Morales M.A., Mele R., Ludovisi A., Bruschi F., Tosini F., Pozio E. 2004. Cryptosporidium parvum-specific CD4 Th1 cells from sensitized donors responding to both fractionated and recombinant antigenic proteins. Infection and Immunity, 72, 1306–1310. DOI: 10.1128/IAI.72.3.1306-1310.2004.PubMedCrossRefGoogle Scholar
  20. Kapel N., Benhamou Y., Buraud M., Magne D., Opolon O., Gobert J.G. 1996. Kinetics of mucosal ileal gamma-interferon response during cryptosporidiosis in immunocompetent neonatal mice. Parasitology Research, 82, 664–667. DOI: 10.1007/s004360050182.PubMedCrossRefGoogle Scholar
  21. Kasper L.H., Buzoni-Gatel D. 2001. Ups and downs of mucosal cellular immunity against protozoan parasites. Infection and Immunity, 69, 1–8. DOI: 10.1128/IAI.69.1.1-8.2001.PubMedCrossRefGoogle Scholar
  22. Lean I.S., McDonald V., Pollok R.C. 2002. The role of cytokines in the pathogenesis of Cryptosporidium infection. Current Opinion in Infectious Diseases, 15, 229–234.PubMedCrossRefGoogle Scholar
  23. Levings M.K., Allan S., d’Hennezel E., Piccirillo C.A. 2006. Functional dynamics of naturally occurring regulatory T cells in health and autoimmunity. Advances in Immunology, 92, 119–155. DOI: 10.1016/S0065-2776(06)92003-3.PubMedCrossRefGoogle Scholar
  24. Liu W., Putnam A.L., Xu-Yu Z., Szot G.L., Lee M.R., Zhu S., Gottlieb P.A., Kapranov P., Gingeras T.R., Fazekas de St Groth B., Clayberger C., Soper D.M., Ziegler S.F., Bluestone J.A. 2006. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ Treg cells. Journal of Experimental Medicine, 203, 1701–1711. DOI: 10.1084/jem.20060772.PubMedCrossRefGoogle Scholar
  25. Mac Kenzie W.R., Hoxie N.J., Proctor M.E., Gradus M.S., Blair K.A., Peterson D.E., Kazmierczak J.J., Addiss D.G., Fox K.R., Rose J.B., Davis J.P. 1994. A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply. New England Journal of Medicine, 331, 161–167.PubMedCrossRefGoogle Scholar
  26. Male D., Brostoff J., Roth D.B., Roitt I. 2006. Immunity to protozoa and worms. In: (Ed. Mosby Elservier) Immunology. 7th. Canada, 277–297.Google Scholar
  27. Maloy K.J., Powrie F. 2001. Regulatory T cells in the control of immune pathology. Nature Immunology, 2, 816–822. DOI: 10.1038/ni0901-816.PubMedCrossRefGoogle Scholar
  28. Mariotte D., Comby E., Brasseur P., Ballet J.J. 2004. Kinetics of spleen and Peyer’s patch lymphocyte populations during gut parasite clearing in Cryptosporidium parvum infected suckling mice. Parasite Immunology, 26, 1–6. DOI: 10.1111/j.0141-9838.2004.00676.x.PubMedCrossRefGoogle Scholar
  29. Matos O., Alves M., Xiao L., Cama V., Antunes F. 2004. Cryptosporidium felis and C. meleagridis in persons with HIV, Portugal. Emerging Infectious Diseases, 10, 2256–2257.PubMedCrossRefGoogle Scholar
  30. McDonald V. 2000. Host cell-mediated responses to infection with Cryptosporidium. Parasite Immunology, 22, 597–604. DOI: 10.1046/j.1365-3024.2000.00343.x.PubMedCrossRefGoogle Scholar
  31. McDonald V., Bancroft G.J. 1994. Mechanisms of innate and acquired resistance to Cryptosporidium parvum infection in SCID mice. Parasite Immunology, 16, 315–320.PubMedCrossRefGoogle Scholar
  32. McDonald V., Deer R., Uni S., Iseki M., Bancroft G.J. 1992. Immune responses to Cryptosporidium muris and Cryptosporidium parvum in adult immunocompetent or immunocompromised (nude and SCID) mice. Infection and Immunity, 60, 3325–3331.PubMedGoogle Scholar
  33. Miller T.A., Schaefer F.W.3rd. 2007. Characterization of a Cryptosporidium muris infection and reinfection in CF-1 mice. Veterinary Parasitology, 144, 208–221. DOI: 10.1016/j.vetpar.2006.10.026.PubMedCrossRefGoogle Scholar
  34. O’Garra A., Vieira P. 2004. Regulatory T cells and mechanisms of immune system control. Nature Medicine, 10, 801–805. DOI: 10.1038/nm0804-801.PubMedCrossRefGoogle Scholar
  35. Perryman L.E., Mason P.H., Chrisp C.E. 1994. Effect of spleen cell populations on resolution of Cryptosporidium parvum infection in SCID mice. Infection and Immunity, 62, 1474–1477.PubMedGoogle Scholar
  36. Petry F., Jakobi V., Tessema T.S. 2010. Host immune response to Cryptosporidium parvum infection. Experimental Parasitology, 126, 304–309. DOI: 10.1016/j.exppara.2010.05.022.PubMedCrossRefGoogle Scholar
  37. Pinchuk L.M., Filipov N.M. 2008. Differential effects of age on circulating and splenic leukocyte populations in C57BL/6 and BALB/c male mice. Immunity and Ageing, 11, 5–11. DOI: 10.1186/1742-4933-5-1.Google Scholar
  38. Riggs M.W. 2002. Recent advances in cryptosporidiosis: the immune response. Microbes and Infection, 4, 1067–1080. DOI: 10.1016/S1286-4579(02)01631-3.PubMedCrossRefGoogle Scholar
  39. Theodos C.M. 1998. Innate and cell-mediated immune responses to Cryptosporidium parvum. Advances in Parasitology, 40, 87–119.PubMedCrossRefGoogle Scholar
  40. Watanabe K., Mwinzi P.N, Black C.L, Muok E.M, Karanja D.M, Secor W.E., Colley D.G. 2007. T regulatory cell levels decrease in people infected with Schistosoma mansoni on effective treatment. American Journal of Tropical Medicine and Hygiene, 77, 676–682.PubMedGoogle Scholar
  41. Waters W.R., Harp J.A. 1996. Cryptosporidium parvum infection in T-cell receptor (TCR)-α- and TCR-δ-deficient mice. Infection and Immunity, 64, 1854–1857.PubMedGoogle Scholar
  42. Wyatt C.R., Brackett E.J, Perryman L.E., Rice-Ficht A.C., Brown W.C., O’Rourke K.I. 1997. Activation of intestinal intraepithelial T lymphocytes in calves infected with Cryptosporidium parvum. Infection and Immunity, 65, 185–190.PubMedGoogle Scholar
  43. Xiao L., Alderisio K.A., Jiang J. 2006. Detection of Cryptosporidium oocysts in water: effect of the number of samples and analytic replicates on test results. Applied and Environmental Microbiology, 72, 5942–947. DOI: 10.1128/AEM.00927-06.PubMedCrossRefGoogle Scholar
  44. Xiao L., Fayer R. 2008. Molecular characterization of species and genotypes of Cryptosporidium and Giardia and assessment of zoonotic transmission. International Journal for Parasitology, 38, 1239–1255. DOI: 10.1016/j.ijpara.2008.03.006.PubMedCrossRefGoogle Scholar
  45. Xiao L., Feng Y. 2008. Zoonotic cryptosporidiosis. FEMS Immunology and Medical Microbiology, 52, 309–323. DOI: 10.1111/j.1574-695X.2008.00377.x.PubMedCrossRefGoogle Scholar
  46. Xiao L., Ryan U.M. 2008. Molecular epidemiology. In: (Eds. R. Fayer and L. Xiao) Cryptosporidium and Cryptosporidiosis. CRC Press and IWA Publishing, Boca Raton, FL, 119–171.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Vera Codices
    • 1
  • Catarina Martins
    • 2
  • Carlos Novo
    • 2
    • 3
  • Mário Pinho
    • 4
  • Bruno de Sousa
    • 5
  • Ângela Lopes
    • 6
  • Miguel Borrego
    • 2
  • Olga Matos
    • 1
  1. 1.Unidade de Parasitologia Médica, Grupo de Protozoários Oportunistas/VIH e Outros Protozoários, CMDT, Instituto de Higiene e Medicina TropicalUniversidade Nova de LisboaLisboaPortugal
  2. 2.Centro de Estudos de Doen.as Crónicas, CEDOC, Faculdade de Ciências MédicasUniversidade Nova de LisboaLisboaPortugal
  3. 3.Unidade de Parasitologia Médica, Instituto de Higiene e Medicina TropicalUniversidade Nova de LisboaLisboaPortugal
  4. 4.Faculdade de Medicina VeterináriaUniversidade Técnica de LisboaLisboaPortugal
  5. 5.Unidade de Saúde Internacional e Bioestatística, CMDT, Instituto de Higiene e Medicina TropicalUniversidade Nova de LisboaLisboaPortugal
  6. 6.Unidade de Tecnologias de Proteínas e Anticorpos Monoclonais, presently Unidade de Microbiologia Médica, Instituto de Higiene e Medicina TropicalUniversidade Nova de LisboaLisboaPortugal

Personalised recommendations