Acta Parasitologica

, Volume 58, Issue 1, pp 6–12 | Cite as

Molecular characterization of Trypanosoma evansi isolates from water buffaloes (Bubalus bubalis) in the Philippines

  • Marjo V. Villareal
  • Claro N. Mingala
  • Windell L. RiveraEmail author
Original Paper


Trypanosoma evansi infection in the Philippines is frequently reported to affect the country’s livestock, particularly, the buffaloes. To assess the prevalence and intraspecific diversity of T. evansi in the country, blood samples from water buffaloes in different geographical regions were collected during an outbreak. T. evansi was detected in all 79 animals tested using PCR targeting the RoTat 1.2 VSG gene. Sequencing of the rDNA complete internal transcribed spacer (ITS) region including the 5.8S subunit showed high similarity (99–100%) between Philippine isolates and known T. evansi isolates in Genbank. Tree construction based on the same region confirmed the close relationship between Philippine and reported Thai isolates as compared to Egyptian isolates separated by relatively small genetic distances, 47 polymorphisms, despite the clustering in four branches. Overall, the results of this study prove genetic diversity within T. evansi species despite previous reports on limited heterogeneity among isolates worldwide.


Trypanosoma evansi ITS region DNA sequencing phylogeny water buffaloes Philippines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agbo E.C., Majiwa P.A., Claassen E.J., Roos M.H. 2001. Measure of molecular diversity within the Trypanosoma brucei subspecies Trypanosoma brucei brucei and Trypanosoma brucei gambiense as revealed by genotypic characterization. Experimental Parasitology, 99, 123–131. DOI: 10.1006/expr.2001.4666.PubMedCrossRefGoogle Scholar
  2. Amer S., Ryu O., Tada C., Fukuda Y., Inoue N., Nakai Y. 2011. Molecular identification and phylogenetic analysis of Trypanosoma evansi from dromedary camels (Camelus dromedarius) in Egypt, a pilot study. Acta Tropica, 117, 39–46. DOI: 10.1016/j.actatropica.2010.09.010.PubMedCrossRefGoogle Scholar
  3. Antoine-Moussiaux N., Magez S., Desmecht D. 2008. Contributions of experimental mouse models to the understanding of African trypanosomiasis. Trends in Parasitology, 24, 411–418. DOI: 10.1016/ Scholar
  4. Areekit S., Singhapan P., Kanjanavas P., Khuchanreontaworn S., Sriyapai T., Pakpitcharoen A., Chansiri K. 2008. Genetic diversity of Trypanosoma evansi in beef cattle based on internal transcribed spacer region. Infection, Genetics and Evolution, 8, 484–488. DOI: 10.1292/jvms.69.487.PubMedCrossRefGoogle Scholar
  5. Aymerich S., Goldenberg S. 1989. The karyotype of Trypanosoma cruzi Dm28c: comparison with other T. cruzi strains and trypanosomatids. Experimental Parasitology, 69, 107–115. DOI: 10.1016/0014-4894(89)90178-1.PubMedCrossRefGoogle Scholar
  6. Beltrame-Botelho I.T., Gaspar-Silva D., Steindel M., Dávila A.M., Grisard E.C. 2005. Internal transcribed spacers (ITS) of Trypanosoma rangeli ribosomal DNA (rDNA): a useful marker for inter-specific differentiation. Infection, Genetics and Evolution, 5, 17–28. DOI: 10.1016/j.meegid.2004.05.007.PubMedCrossRefGoogle Scholar
  7. Biteau N., Bringaud F., Gibson W., Truc P., Baltz T. 2000. Characterization of Trypanozoon isolates using a repeated coding sequence and microsatellite markers. Molecular and Biochemical Parasitology, 105, 187–202. DOI: 10.1016/S0166-6851(99)00171-1.PubMedCrossRefGoogle Scholar
  8. Cacciò S.M., Beck R., Almeida A., Bajer A., Pozio E. 2010. Identification of Giardia species and Giardia duodenalis assemblages by sequence analysis of the 5.8S rDNA gene and internal transcribed spacers. Parasitology, 137, 919–925. DOI: 10.1017/S003118200999179X.PubMedCrossRefGoogle Scholar
  9. Carmona T.M., Garrizzo J., Roschman-González A., Tejero F., Escalante A., Aso P.M. 2006. Susceptibility of different mouse strains to experimental infection with a Venezuelan isolate of Trypanosoma evansi. Journal of Protozoology Research, 16, 1–8.Google Scholar
  10. Dargantes A.P., Mercado R.T., Dobson R.J., Reid S.A. 2009. Estimating the impact of Trypanosoma evansi infection (surra) on buffalo population dynamics in southern Philippines using data from cross-sectional surveys. International Journal for Parasitology, 39, 1109–1114. DOI: 10.1016/j.ijpara.2009.02.012.PubMedCrossRefGoogle Scholar
  11. Dobson R.J., Dargantes A.P., Mercado R.T., Reid S.A. 2009. Models for Trypanosoma evansi (surra), its control and economic impact on small-hold livestock owners in the Philippines. International Journal for Parasitology, 39, 1115–1123. DOI: 10.1016/j.ijpara.2009.02.013.PubMedCrossRefGoogle Scholar
  12. Gibson W. 2002. Epidemiology and diagnosis of African trypanosomiasis using DNA probes. Transactions of the Royal Society of Tropical Medicine and Hygiene, Suppl. 1, 141–143.Google Scholar
  13. Guindon S., Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704. DOI: 10.1080/10635150390235520.PubMedCrossRefGoogle Scholar
  14. Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  15. Hasegawa M., Kishino H., Yano T. 1985. Dating the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22, 160–174. DOI: 10.1007/BF02101694.PubMedCrossRefGoogle Scholar
  16. Herrera H.M., Norek A., Freitas T.P., Rademaker V., Fernandes O., Jansen A.M. 2005. Domestic and wild mammals infection by Trypanosoma evansi in a pristine area of the Brazilian Pantanal region. Parasitology Research, 96, 121–126. DOI: 10.1007/s00436-005-1334-6.PubMedCrossRefGoogle Scholar
  17. Homan W.L., Limper L., Verlaan M., Borst A., Vercammen M., van Knapen F. 1997. Comparison of the internal transcribed spacer, ITS1, from Toxoplasma gondii isolates and Neospora caninum. Parasitology Research, 83, 285–289. DOI: 10.1007/s004360050248.PubMedCrossRefGoogle Scholar
  18. Konnai S., Mekata H., Mingala C.N., Abes N.S., Gutierrez C.A., Herrera J.R.V., Dargantes A.P., Witola W.H., Cruz L.C., Inoue N., Onuma M., Ohashi K. 2009. Development and application of a quantitative real-time PCR for the diagnosis of surra in water buffaloes. Infection, Genetics and Evolution, 9, 449–452. DOI: 10.1016/j.meegid.2009.01.006.PubMedCrossRefGoogle Scholar
  19. Khuchareontaworn S., Singhaphan P., Viseshakul N., Chansiri K. 2007. Genetic diversity of Trypanosoma evansi in buffalo based on internal transcribed spacer (ITS) regions. Journal of Veterinary Medical Science, 69, 487–493. DOI: 10.1292/jvms.69.487.PubMedCrossRefGoogle Scholar
  20. Lanave C., Preparata G., Saccone C., Serio G. 1984. A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution, 20, 86–93. DOI: 10.1007/BF02101990.PubMedCrossRefGoogle Scholar
  21. Lollis L., Gerhold R., McDougald L., Beckstead R. 2011. Molecular characterization of Histomonas meleagridis and other parabasalids in the United States using the 5.8S, ITS-1, and ITS-2 rRNA regions. Journal of Parasitology, 97, 610–615. DOI: Scholar
  22. Luckins A.G. 1988. Trypanosoma evansi in Asia. Trends in Parasitology, 4, 137–142. DOI: 10.1016/0169-4758(88)90188-3.Google Scholar
  23. Lun Z.-R., Li A.-X., Chen X.-G., Lu L.-X., Zhu X.-Q. 2004. Molecular profiles of Trypanosoma brucei, T. evansi, and T. equiperdum stocks revealed by the random amplified polymorphic DNA method. Parasitology Research, 92, 335–340. DOI: 10.1007/s00436-003-1054-8.PubMedCrossRefGoogle Scholar
  24. Majiwa P.A., Webster P. 1987. A repetitive deoxyribonucleic acid sequence distinguishes Trypanosoma simiae from T. congolense. Parasitology, 95, 543–558. DOI: 10.1017/S0031182000057978.PubMedCrossRefGoogle Scholar
  25. Manuel M.F. 1998. Sporadic outbreaks of surra in the Philippines and its economic impact. Journal of Protozoology Research, 8, 131–138.Google Scholar
  26. Masiga D.K., Ndung’u K., Tweedie A., Tait A., Turner C.M. 2006. Trypanosoma evansi: genetic variability detected using amplified restriction fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) analysis of Kenyan isolates. Experimental Parasitology, 114, 147–153. DOI: 10.1016/j.exppara.2006.03.002.PubMedCrossRefGoogle Scholar
  27. Mekata H., Konnai S., Witola W.H., Inoue N., Onuma M., Ohashi K. 2009. Molecular detection of trypanosomes in cattle in South America and genetic diversity of Trypanosoma evansi based on expression-site-associated gene 6. Infection, Genetics and Evolution, 9, 1301–1305. DOI:10.1016/j.meegid.2009.07.009.PubMedCrossRefGoogle Scholar
  28. Nijru Z.K., Constantine C.C., Gitonga P.K., Thompson R.C., Reid S.A. 2007. Genetic variability of Trypanosoma evansi isolates detected by inter-simple sequence repeat anchored-PCR and microsatellite. Veterinary Parasitology, 147, 51–60. DOI: 10.1016/j.vetpar.2007.03.010.CrossRefGoogle Scholar
  29. Page R.D. 1996. TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences, 12, 357–358. DOI: 10.1093/bioinformatics/12.4.357.PubMedGoogle Scholar
  30. Perrone T.M., Gonzatti M.I., Villamizar G., Escalante A., Aso P.M. 2009. Molecular profiles of Venezuelan isolates of Trypanosoma sp. by random amplified polymorphic DNA method. Veterinary Parasitology, 161, 194–200. DOI: 10.1016/j.vetpar.2009.01.034.CrossRefGoogle Scholar
  31. Reid S.A. 2002. Trypanosoma evansi control and containment in Australasia. Trends in Parasitology, 18, 219–224. DOI: 10.1016/S1471-4922(02)02250-X.PubMedCrossRefGoogle Scholar
  32. Santos S.S., Cupolillo E., Junqueira A., Coura J.R., Jansen A., Sturm N.R., Campbell D.A., Fernandes O. 2002. The genetic diversity of Brazilian Trypanosoma cruzi isolates and the phylogenetic positioning of zymodeme 3, based on the internal transcribed spacer of the ribosomal gene. Annals of Tropical Medicine and Parasitology, 96, 755–764. DOI: Scholar
  33. Swofford D.L. 2002. PAUP* 4.0: Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  34. Tamura K., Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526.PubMedGoogle Scholar
  35. Tian Z., Liu G., Xie J., Shen H., Zhang L., Zhang P., Luo J. 2011. The internal transcribed spacer 1 (ITS-1), a controversial marker for the genetic diversity of Trypanosoma evansi. Experimental Parasitology, 129, 303–306. DOI: 10.1016/j.exppara.2011.08.006.PubMedCrossRefGoogle Scholar
  36. Uche U.E., Jones T.W., Boid R. 1992. Antibody patterns in rabbits showing different levels of susceptibility to an experimental Trypanosoma evansi infection. Acta Tropica, 52, 139–147. DOI:10.1016/0001-706X(92)90030-2.PubMedCrossRefGoogle Scholar
  37. Venus E.B., Dumag P.U. 1967. Incidence of surra infection among carabaos examined in Nueva Ecija and Pampanga. Philippine Journal of Animal Industry, 22, 177–180.Google Scholar
  38. Walsh P.S., D.A. Metzger, Higuchi R. 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques, 10, 506–513.PubMedGoogle Scholar
  39. Witola W.H., Sarataphan N., Inoue N., Ohashi K., Onuma M. 2005. Genetic variability in ESAG6 genes among Trypanosoma evansi isolates and in comparison to other Trypanozoon members. Acta Tropica, 93, 63–73. DOI: 10.1016/j.actatropica.2004.09.006.PubMedCrossRefGoogle Scholar
  40. Yutuc L. 1935. Observations on the occurrence of surra in Laguna province and its relation to the 1933 outbreak among college of agricultural animals. Philippine Agriculturist, 24, 104–125.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Marjo V. Villareal
    • 1
  • Claro N. Mingala
    • 2
  • Windell L. Rivera
    • 1
    • 3
    Email author
  1. 1.Institute of Biology, College of ScienceUniversity of the PhilippinesDiliman, Quezon CityPhilippines
  2. 2.Animal Health Unit, Philippine Carabao CenterScience City of MuñozNueva EcijaPhilippines
  3. 3.Molecular Protozoology Laboratory, Natural Sciences Research InstituteUniversity of the PhilippinesDiliman, Quezon CityPhilippines

Personalised recommendations