Cellular & Molecular Biology Letters

, Volume 19, Issue 3, pp 461–482 | Cite as

The lectin-binding pattern of nucleolin and its interaction with endogenous galectin-3

  • Dorota Hoja-Łukowicz
  • Sylwia Kedracka-Krok
  • Weronika Duda
  • Anna Lityńska
Research Article


Unlike nuclear nucleolin, surface-expressed and cytoplasmic nucleolin exhibit Tn antigen. Here, we show localization-dependent differences in the glycosylation and proteolysis patterns of nucleolin. Our results provide evidence for different paths of nucleolin proteolysis in the nucleus, in the cytoplasm, and on the cell surface. We found that full-length nucleolin and some proteolytic fragments coexist within live cells and are not solely the result of the preparation procedure. Extranuclear nucleolin undergoes N- and O-glycosylation, and unlike cytoplasmic nucleolin, membrane-associated nucleolin is not fucosylated. Here, we show for the first time that nucleolin and endogenous galectin-3 exist in the same complexes in the nucleolus, the cytoplasm, and on the cell surface of melanoma cells. Assessments of the interaction of nucleolin with galectin-3 revealed nucleolar co-localization in interphase, suggesting that galectin-3 may be involved in DNA organization and ribosome biogenesis.


Glycosylation of nucleolin Galectin-3 Melanoma Mass spectrometry Confocal microscopy Lectin assay Co-immunoprecipitation 

Abbreviations used


Aleuria aurantia agglutinin


Datura stramonium gglutinin


Galanthus nivalis agglutinin

H antigen



Lycopersicon esculentum agglutinin




Tetragonolobus purpureus agglutinin


Maackia amurensis agglutinin


Sambucus nigra agglutinin


Phaseolus vulgaris erythroagglutinin


Phaseolus vulgaris leucoagglutinin


peanut agglutinin

T antigen

Galβ1-3GalNAcα1 -Ser/Thr

Tn antigen

GalNAcα1 -Ser/Thr


Ulex europaeus agglutinin


Vicia villosa agglutinin

Supplementary material

11658_2014_206_MOESM1_ESM.pdf (1.9 mb)
Supplementary material, approximately 1.87 MB.


  1. 1.
    Mehes, G. and Pajor, L. Nucleolin and fibrillarin expression in stimulated lymphocytes and differentiating HL-60 cells. A flow cytometric assay. Cell Prolif. 28 (1995) 329–336.PubMedCrossRefGoogle Scholar
  2. 2.
    Sirri, V., Roussel, P., Gendron, M.C. and Hernandez-Verdun, D. Amount of the two major Ag-NOR proteins, nucleolin, and protein B23 is cell-cycle dependent. Cytometry 28 (1997) 147–156.PubMedCrossRefGoogle Scholar
  3. 3.
    Gorczyca, W., Smolewski, P., Grabarek, J., Ardelt, B., Ita, M., Melamed, M.R. and Darzynkiewicz, Z. Morphometry of nucleoli and expression of nucleolin analyzed by laser scanning cytometry in mitogenically stimulated lymphocytes. Cytometry 45 (2001) 206–213.PubMedCrossRefGoogle Scholar
  4. 4.
    Mongelard, F. and Bouvet, P. Nucleolin: a multiFACeTed protein. Trends Cell Biol. 17 (2007) 80–86.PubMedCrossRefGoogle Scholar
  5. 5.
    Ginisty, H., Sicard, H., Roger, B. and Bouvet, P. Structure and functions of nucleolin. J. Cell Sci. 112 (1999) 761–772.PubMedGoogle Scholar
  6. 6.
    Bouvet, P., Diaz, J.-J., Kindbeiter, K., Madjar, J.-J. and Amalric, F. Nucleolin interacts with several ribosomal proteins through its RGG domain. J. Biol. Chem. 273 (1998) 19025–19029.PubMedCrossRefGoogle Scholar
  7. 7.
    Ghisolfis, L., Amalric, G.J.F. and Erard, M. The glycine-rich domain of nucleolin has an unusual super secondary structure responsible for its RNAhelix-destabilizing properties. J. Biol. Chem. 267 (1992) 2955–2959.Google Scholar
  8. 8.
    Ginisty, H., Amalric, F. and Bouvet, P. Nucleolin functions in the first step of ribosomal RNA processing. EMBO J. 17 (1998) 1476–1486.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Belenguer, P., Baldin, W., Mathieu, C., Prats, H., Bensaid, M., Bouche, G. and Amalric, F. Protein kinase NII and the regulation of rDNA transcription in mammalian cells. Nucleic Acids Res. 17 (1989) 6625–6636.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Belenguer, P., Caizergues-Ferrer, M., Labbe, J.-C., Doree, M. and Amalric, F. Mitosis-specific phosphorylation of nucleolin by p34dc2 protein kinase. Mol. Cell. Biol. 10 (1990) 3607–3618.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Srivastava, M. and Pollard, H.B. Molecular dissection of nucleolin’s role in growth and cell proliferation: new insights. FASEB J. 13 (1999) 1911–1922.PubMedGoogle Scholar
  12. 12.
    Zhang, J., Tsaprailis, G. and Bowden, G.T. Nucleolin stabilizes Bcl-XL messenger RNA in response to UVA irradiation. Cancer Res. 68 (2008) 1046–1054.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Chen, Ch.-Y., Gherzi, R., Andersen, J.S., Gaietta, G., Jurchott, K., Royer, H.-D., Mann, M. and Karin, M. Nucleolin and YB-1 are required for JNKmediated interleukin-2 mRNA stabilization during T-cell activation. Genes Dev. 14 (2000) 1236–1248.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Jiang, Y., Xu, X.-S. and Russell, J.E. A nucleolin-binding 3′ untranslated region element stabilizes β-globin mRNA in vivo. Mol. Cell. Biol. 26 (2006) 2419–2429.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Lee, P.-T., Liao, P.-C., Chang, W.-C. and Tseng, J.T. Epidermal growth factor increases the interaction between nucleolin and heterogeneous nuclear ribonucleoprotein K/Poly(C) binding protein 1 complex to regulate the gastrin mRNA turnover. Mol. Biol. Cell 18 (2007) 5004–5013.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Otake, Y., Soundararajan, S., Sengupta, T.K., Kio, E.A., Smith, J.C., Pineda-Roman, M., Stuart, R.K., Spicer, E, K. and Fernandes, D.J. Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA. Blood 109 (2007) 3069–3075.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Rajagopalan, L.E., Westmark, C.J., Jarzembowski, J.A. and Malter, J.S. hnRNP C increases amyloid precursor protein (APP) production by stabilizing APP mRNA. Nucleic Acids Res. 26 (1998) 3418–3423.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Soundararajan, S., Chen, W., Spicer, E.K., Courtenay-Luck, N. and Fernandes, D.J. The Nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res. 68 (2008) 2358–2365.PubMedCrossRefGoogle Scholar
  19. 19.
    Ishimaru, D., Zuraw, L., Ramalingam, S., Sengupta, T.K., Bandyopadhyay, S., Reuben, A., Fernandes, D.J. and Spicer, E.K. Mechanism of regulation of bcl-2 mRNA by nucleolin and A+U-rich element-binding factor 1 (AUF1). J. Biol. Chem. 285 (2010) 27182–27191.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Takagi, M., Absalon, M.J., McLure, K.G. and Kastan, M.B. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123 (2005) 49–63.PubMedCrossRefGoogle Scholar
  21. 21.
    Said, E.A., Krust, B., Nisole, S., Svab, J., Briand, J.-P. and Hovanessian, A.G. The anti-HIV cytokine midkine binds the cell surface-expressed nucleolin as a low affinity receptor. J. Biol. Chem. 277 (2002) 37492–37502.PubMedCrossRefGoogle Scholar
  22. 22.
    Sinclair, J.F. and O’Brien, A.D. Cell surface-localized nucleolin is a rukaryotic Receptor for the adhesin intimin-γ of enterohemorrhagic Escherichia coli O157:H7. J. Biol. Chem. 277 (2002) 2876–2885.PubMedCrossRefGoogle Scholar
  23. 23.
    Chen, X., Kube, D.M., Cooper, M.J. and Davis, P.B. Cell surface nucleolin serves as receptor for DNA nanoparticles composed of pegylated polylysine and DNA. Mol. Ther. 16 (2008) 333–342.PubMedCrossRefGoogle Scholar
  24. 24.
    Christian, S., Pilch, J., Akerman, M.E., Porkka, K., Laakkonen, P. and Ruoslahti, E. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J. Cell Biol. 163 (2003) 871–878.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Harms, G., Kraft, R., Grelle, G., Volz, B., Dernedde, J. and Tauber R. Identification of nucleolin as a new L-selectin ligand. Biochem. J. 360 (2001) 531–538.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Joo, E.J., ten Dam, G.B., van Kuppevelt, T.H., Toida, T., Linhardt, R.J. and Kim, Y.S. Nucleolin: acharan sulfate-binding protein on the surface of cancer cells. Glycobiology 15 (2005) 1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Legrand, D., Vigie, K., Said, E.A., Elass, E., Masson, M., Slomianny, M.-Ch., Carpentier, M., Briand, J.-P., Mazurier, J. and Hovanessian, A.G. Surface nucleolin participates in both the binding and endocytosis of lactoferrin in target cells. Eur. J. Biochem. 271 (2004) 303–317.PubMedCrossRefGoogle Scholar
  28. 28.
    Hoja-Łukowicz, D., Przybyło, M., Pocheć, E., Drabik, A., Silberring, J., Kremser, M., Schadendorf, D., Laidler, P. and Lityńska, A. The new face of nucleolin in human melanoma. Cancer Immunol. Immunother. 58 (2009) 1471–1480.PubMedCrossRefGoogle Scholar
  29. 29.
    Hovanessian, A.G., Puvion-Dutilleul, F., Nisole, S., Svab, J., Perret, E., Deng, J.-S. and Krust, B. The cell-surface-expressed nucleolin is associated with the actin cytoskeleton. Exp. Cell Res. 261 (2000) 312–328.PubMedCrossRefGoogle Scholar
  30. 30.
    Kusakawa, T., Shimakami, T., Kaneko, S., Yoshioka, K. and Murakami, S. Functional interaction of hepatitis C virus NS5B with nucleolin GAR domain. J. Biochem. 141 (2007) 917–927.PubMedCrossRefGoogle Scholar
  31. 31.
    Hovanessian, A.G. Midkine, a cytokine that inhibits HIV infection by binding to the cell surface expressed nucleolin. Cell Res. 16 (2006) 174–181.PubMedCrossRefGoogle Scholar
  32. 32.
    Said, E.A., Courty, J., Svab, J., Delbe, J., Krust, B. and Hovanessian, A.G. Pleiotrophin inhibits HIV infection by binding the cellsurface-expressed nucleolin. FEBS J. 272 (2005) 4646–4659.PubMedCrossRefGoogle Scholar
  33. 33.
    Reyes-Reyes, E.M. and Akiyama, S.K. Cell-surface nucleolin is a signal transducing P-selectin binding protein for human colon carcinoma cells. Exp. Cell Res. 314 (2008) 2212–2223.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Hirano, K., Miki, Y., Hirai, Y., Sato, R., Itoh, T., Hayashi, A., Yamanaka, M., Eda, S. and Beppu, M. A Multifunctional shuttling protein nucleolin is a macrophage receptor for apoptotic cells. J. Biol. Chem. 280 (2005) 39284–39293.PubMedCrossRefGoogle Scholar
  35. 35.
    Shi, H., Huang, Y., Zhou, H., Song, X., Yuan, S., Fu, Y. and Luo, Y. Nucleolin is a receptor that mediates anti-angiogenic and antitumor activity of endostatin. Blood 110 (2007) 2899–2906.PubMedCrossRefGoogle Scholar
  36. 36.
    Carpentier, M., Morelle, W., Coddeville, B., Pons, A., Masson, M., Mazurier, J. and Legrand, D. Nucleolin undergoes partial N- and O- glycosylations in the extranuclear cell compartment. Biochemistry 44 (2005) 5804–5815.PubMedCrossRefGoogle Scholar
  37. 37.
    Aldi, S., Giovampaola, C.D., Focarelli, R., Armini, A., Ziche, M., Finetti, F. and Rosati, F. A fucose-containing O-glycoepitope on bovine and human nucleolin. Glycobiology 19 (2009) 337–343.PubMedCrossRefGoogle Scholar
  38. 38.
    Hoja-Łukowicz, D., Lityńska, A., Pocheć, E., Przybyło, M., Kremser, E., Ciołczyk-Wierzbicka, D. and Laidler, P. Identification of PNA-positive proteins in the primary uveal melanoma cell line by mass spectrometry. Acta Biol. Cracov. Seria Zool. 47 (2006) 27–33.Google Scholar
  39. 39.
    Watanabe, T., Tsuge, H., Imagawa, T., Kise, D., Hirano, K., Beppu, M., Takahashi, A., Yamaguchi, K., Fujiki, H. and Suganuma M. Nucleolin as cell surface receptor for tumor necrosis factor-alpha inducing protein: a carcinogenic factor of Helicobacter pylori. J. Cancer Res. Clin. Oncol. 136 (2010) 911–921.PubMedCrossRefGoogle Scholar
  40. 40.
    Görelik, E., Galili, U. and Raz, A. On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis. Cancer Metastasis Rev. 20 (2001) 245–277.PubMedCrossRefGoogle Scholar
  41. 41.
    Voss, P.G., Haudek, K.C., Patterson, R.J. and Wang, J.L. Inhibition of cellfree splicing by saccharides that bind galectins and SR proteins. J. Carbohydr. Chem. 31 (2012) 519–534.CrossRefGoogle Scholar
  42. 42.
    Chen, Ch.-M., Chiang, S.-Y. and Yeh, N.-H. Increased stability of nucleolin in proliferating cells by inhibition of its self-cleaving activity. J. Biol. Chem. 266 (1991) 7754–7758.PubMedGoogle Scholar
  43. 43.
    Fang, S.H. and Yeh, N.H. The self-cleaving activity of nucleolin determines its molecular dynamics in relation to cell proliferation. Exp. Cell Res. 208 (1993) 48–53.PubMedCrossRefGoogle Scholar
  44. 44.
    Lee, N., Wang, W.-Ch. and Fukuda, M. Granulocytic differentiation of HL-60 cells is associated with increase of poly-N-acetyllactosamine in Asn-linked oligosaccharides attached to human lysosomal membrane glycoproteins. J. Biol. Chem. 265 (1990) 20476–20487.PubMedGoogle Scholar
  45. 45.
    Yan, L., Wilkins, P.P., Alvarez-Manilla, G., Do, S.-I., Smith, D.F. and Cummings, R.D. Immobilized Lotus tetragonolobus agglutinin binds oligosaccharides containing the Lex determinant. Glycoconj. J. 14 (1997) 45–55.PubMedCrossRefGoogle Scholar
  46. 46.
    Hoja-Łukowicz, D., Link-Lenczowski, P., Carpentieri, A., Amoresano, A., Pocheć, E., Artemenko, K.A., Bergquist, J. and Lityńska, A. L1CAM from human melanoma carries a novel type of N-glycan with Galβ1-4Galβ1-motif. Involvement of N-linked glycans in migratory and invasive behaviour of melanoma cells. Glycoconj. J. 30 (2013) 205–225.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Caizergues-Ferrer, M., Belenguer, P., Lapeyre, B., Amalric, F., Wallace, M.O. and Olson, M.O.J. Phosphorylation of nucleolin by a nucleolar type NII protein kinase. Biochemistry 26 (1987) 7876–7883.PubMedCrossRefGoogle Scholar
  48. 48.
    Tediose, T., Kolev, M., Sivasankar, B., Brennan, P., Morgan, B.P. and Donev, R. Interplay between REST and nucleolin transcription factors: a key mechanism in the overexpression of genes upon increased phosphorylation. Nucleic Acids Res. 38 (2010) 2799–2812.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Garcia, M.C., Williams, J., Johnson, K., Olden, K. and Roberts, J.D. Arachidonic acid stimulates formation of a novel complex containing nucleolin and RhoA. FEBS Lett. 585 (2011) 618–622.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Warrener, P. and Petryshyn, R. Phosphorylation and proteolytic degradation of nucleolin from 3T3-F442A cells. Biochem. Biophys. Res. Commun. 180 (1991) 716–723.PubMedCrossRefGoogle Scholar
  51. 51.
    Bourbon, H., Bugler, B., Caizergues-Ferrer, M. and Amalric, F. Role of phosphorylation on the maturation pathways of a 100 kDa nucleolar protein. FEBS Lett. 155 (1983) 218–222.PubMedCrossRefGoogle Scholar
  52. 52.
    Semba, S., Mizuuchi, E. and Yokozaki, H. Requirement of phosphatase of regenerating liver-3 for the nucleolar localization of nucleolin during the progression of colorectal carcinoma. Cancer Sci. 1012 (2010) 254–226.Google Scholar
  53. 53.
    Losfeld, M.-E., Khoury, D.E., Mariot, P., Carpentier, M., Krust, B., Briand, J.-P., Mazurier, J., Hovanessian, A.G. and Legrand, D. The cell surface expressed nucleolin is a glycoprotein that triggers calcium entry into mammalian cells. Exp. Cell Res. 315 (2009) 357–369.PubMedCrossRefGoogle Scholar
  54. 54.
    Losfeld, M.-E., Leroy, A., Coddeville, B., Carpentier, M., Mazurier, J. and Legrand, D. N-glycosylation influences the structure and self-association abilities of recombinant nucleolin. FEBS J. 278 (2011) 2552–2564.PubMedCrossRefGoogle Scholar
  55. 55.
    Agrwal, N., Wang, J.L. and Voss, P.G. Carbohydrate-binding Protein 35. J. Biol. Chem. 264 (1989) 17236–17242.PubMedGoogle Scholar
  56. 56.
    Paces-Fessy, M., Boucher, D., Petit, E., Paute-Briand, S. and Blanchet-Tournier, M.-F. The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins. Biochem. J. 378 (2004) 353–362.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Haudek, K.C., Spronk, K.J., Voss, P.G., Patterson, R.J., Wang, J.L. and Arnoys, E.J. Dynamics of galectin-3 in the nucleus and cytoplasm. Biochim. Biophys. Acta 1800 (2010) 181–189.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Mehul, B., Bawumia, S. and Hughes, R.C. Cross-linking of galectin 3, a galactose-binding protein of mammalian cells, by tissue-type transglutaminase. FEBS Lett. 360 (1995) 160–164.PubMedCrossRefGoogle Scholar
  59. 59.
    Ahmad, N., Gabius, H.J., Andre, S., Kaltner, H., Sabesan, S., Roy, R., Liu, B., Macaluso, F. and Brewer, C.F. Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J. Biol. Chem. 279 (2004) 10841–10847.PubMedCrossRefGoogle Scholar
  60. 60.
    Lajoie, P., Goetz, J.G., Dennis, J.W. and Nabi, I.R. Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J. Cell Biol. 185 (2009) 381–385.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • Dorota Hoja-Łukowicz
    • 1
  • Sylwia Kedracka-Krok
    • 2
    • 3
  • Weronika Duda
    • 4
  • Anna Lityńska
    • 1
  1. 1.Department of Glycoconjugate Biochemistry, Institute of ZoologyJagiellonian UniversityKrakówPoland
  2. 2.Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
  3. 3.Malopolska Centre of BiotechnologyJagiellonian UniversityKrakówPoland
  4. 4.Departament of Neurophysiology, Laboratory of NeuropsychologyNencki Institute of Experimental Biology Polish Academy of SciencesWarszawaPoland

Personalised recommendations