Cellular & Molecular Biology Letters

, Volume 18, Issue 3, pp 398–415 | Cite as

Transcriptional regulation of mouse mesencephalic astrocyte-derived neurotrophic factor in Neuro2a cells

  • Kentaro Oh-Hashi
  • Yoko Hirata
  • Kazutoshi Kiuchi
Research Article


Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a novel type of trophic factor. Recent studies indicate that the MANF gene is induced in response to endoplasmic reticulum (ER) stress through ER stress response element II (ERSE-II) in its 5′-flanking region. In this study, we evaluated the roles of six ER stress response transcription factors in the regulation of the promoter activities of the mouse MANF gene via ERSE-II using various types of mutant MANF luciferase reporter constructs. Treatment with thapsigargin (Tg) induced MANF mRNA generation in parallel with the elevation of ATF6α, sXBP and Luman mRNA levels in Neuro2a cells. Of the six transcription factors, ATF6β most strongly increased the MANF promoter activity via ERSE-II, while the effects of ATF6β and sXBP1 were moderate. However, overexpression of Luman or OASIS did not enhance ERSE-II-dependent MANF promoter activity in Neuro2a cells. To evaluate the relationships between transcription factors in the regulation of ERSE-II-dependent MANF promoter activity, we transfected two effective transcription factor constructs chosen from ATF6α, ATF6β, uXBP1 and sXBP1 into Neuro2a cells with the MANF reporter construct. The MANF promoter activity induced by co-transfection of ATF6α with ATF6β was significantly lower than that induced by ATF6α alone, while other combinations did not show any effect on the ERSE-II-dependent MANF promoter activity in Neuro2a cells. Our study is the first to show the efficiency of ER stress-related transcription factors for ERSE-II in activating the transcription of the mouse MANF gene in Neuro2a cells.

Key words


Abbreviations used


arginine-rich, mutated in early stage of tumor


activating transcription factor 6


cyclic AMP-responsive element


cyclic AMP-responsive element-binding protein


cysteine-rich with EGF-like domains 2


endoplasmic reticulum


ER stress response element


78-kDa glucose-regulated protein


homocysteine-induced endoplasmic reticulum protein


inositol-requiring enzyme 1


mesencephalic astrocyte-derived neurotrophic factor




old astrocyte specifically induced substance


PRKR-like endoplasmic reticulum kinase


regulated intramembrane proteolysis




X-box binding protein 1

Supplementary material

11658_2013_96_MOESM1_ESM.pdf (403 kb)
Supplementary material, approximately 403 KB.


  1. 1.
    Shridhar, R., Shridhar, V., Rivard, S., Siegfried, J.M., Pietraszkiewicz, H., Ensley, J., Pauley, R., Grignon, D., Sakr, W., Miller, O.J. and Smith, D.I. Mutations in the arginine-rich protein gene, in lung, breast, and prostate cancers, and in squamous cell carcinoma of the head and neck. Cancer Res. 56 (1996) 5576–5578.PubMedGoogle Scholar
  2. 2.
    Evron, E., Cairns, P., Halachmi, N., Ahrendt, S.A., Reed, A.L. and Sidransky, D. Normal polymorphism in the incomplete trinucleotide repeat of the arginine-rich protein gene. Cancer Res. 57 (1997) 2888–2889.PubMedGoogle Scholar
  3. 3.
    Petrova, P., Raibekas, A., Pevsner, J., Vigo, N., Anafi, M., Moore, M.K., Peaire, A.E., Shridhar, V., Smith, D.I., Kelly, J., Durocher, Y. and Commissiong, J.W. MANF: a new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. J. Mol. Neurosci. 20 (2003) 173–188.CrossRefPubMedGoogle Scholar
  4. 4.
    Voutilainen, M.H., Bäck, S., Pörsti, E., Toppinen, L., Lindgren, L., Lindholm, P., Peränen, J., Saarma, M. and Tuominen, R.K. Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson’s disease. J. Neurosci. 29 (2009) 9651–9659.CrossRefPubMedGoogle Scholar
  5. 5.
    Airavaara, M., Shen, H., Kuo, C.C., Peränen, J., Saarma, M., Hoffer, B. and Wang, Y. Mesencephalic astrocyte-derived neurotrophic factor reduces ischemic brain injury and promotes behavioral recovery in rats. J. Comp. Neurol. 515 (2009) 116–124.CrossRefPubMedGoogle Scholar
  6. 6.
    Yu, Y.Q., Liu, L.C., Wang, F.C., Liang, Y., Cha, D.Q., Zhang, J.J., Shen, Y.J., Wang, H.P., Fang, S. and Shen, Y.X. Induction profile of MANF/ARMET by cerebral ischemia and its implication for neuron protection. J. Cereb. Blood Flow Metab. 30 (2010) 79–91.CrossRefPubMedGoogle Scholar
  7. 7.
    Gething, M.J. and Sambrook, J. Protein folding in the cell. Nature 355 (1992) 33–45.CrossRefPubMedGoogle Scholar
  8. 8.
    Helenius, A., Marquardt, T. and Braakman, I. The endoplasmic reticulum as a protein-folding compartment. Trends Cell Biol. 2 (1992) 227–231.CrossRefPubMedGoogle Scholar
  9. 9.
    Kim, I., Xu, W. and Ree, J.C. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 7 (2008) 1013–1030.CrossRefPubMedGoogle Scholar
  10. 10.
    Lindholm, D., Wootz, H. and Korhonen, L. ER stress and neurodegenerative diseases. Cell Death Differ. 13 (2006) 385–392.CrossRefPubMedGoogle Scholar
  11. 11.
    Harding, H.P., Zhang, Y. and Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397 (1999) 271–274.CrossRefPubMedGoogle Scholar
  12. 12.
    Calfon, M., Zeng, H., Urano, F., Till, J.H., Hubbard, S.R., Harding, H.P., Clark, S.G. and Ron, D. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415 (2002) 92–96.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhu, C., Johansen, F.E. and Prywes, R. Interaction of ATF6 and serum response factor. Mol. Cell. Biol. 17 (1997) 4957–4966.PubMedGoogle Scholar
  14. 14.
    Haze, K., Yoshida, H., Yanagi, H., Yura, T. and Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 10 (1999) 3787–3799.CrossRefPubMedGoogle Scholar
  15. 15.
    Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi, M. and Mori, K. Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6α and 6β that activates the mammalian unfolded protein response. Mol. Cell. Biol. 21 (2001) 1239–1248.CrossRefPubMedGoogle Scholar
  16. 16.
    Yamamoto, K., Sato, T., Matsui, T., Sato, M., Okada, T., Yoshida, H., Harada, A. and Mori, K. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1. Dev. Cell 13 (2007) 365–376.CrossRefPubMedGoogle Scholar
  17. 17.
    Yamamoto, K., Yoshida, H., Kokame, K., Kaufman, R.J. and Mori, K. Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE, UPRE and ERSE-II. J. Biochem. 136 (2004) 343–350.CrossRefPubMedGoogle Scholar
  18. 18.
    Mizobuchi, N., Hoseki, J., Kubota, H., Toyokuni, S., Nozaki, J., Naitoh, M., Koizumi, A. and Nagata, K. ARMET is a soluble ER protein induced by the unfolded protein response via ERSE-II element. Cell Struct. Funct. 32 (2007) 41–50.CrossRefPubMedGoogle Scholar
  19. 19.
    Kokame, K., Kato, H. and Miyata, T. Identification of ERSE-II, a new cisacting element responsible for the ATF6-dependent mammalian unfolded protein response. J. Biol. Chem. 276 (2001) 9199–9205.CrossRefPubMedGoogle Scholar
  20. 20.
    Haze, K., Okada, T., Yoshida, H., Yanagi, H., Yura, T., Negishi, M. and Mori, K. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response. Biochem. J. 355 (2001) 19–28.CrossRefPubMedGoogle Scholar
  21. 21.
    Liang, G., Audas, T.E., Li, Y., Cockram, G.P., Dean, J.D., Martyn, A.C., Kokame, K. and Lu, R. Luman/CREB3 induces transcription of the endoplasmic reticulum (ER) stress response protein Herp through an ER stress response element. Mol. Cell Biol. 26 (2004) 7999–8010.CrossRefGoogle Scholar
  22. 22.
    Kondo, S., Murakami, T., Tatsumi, K., Ogata, M., Kanemoto, S., Otori, K., Iseki, K., Wanaka, A. and Imaizumi, K. OASIS, a CREB/ATF-family member, modulates UPR signalling in astrocytes. Nat. Cell Biol. 7 (2005) 186–194.CrossRefPubMedGoogle Scholar
  23. 23.
    Kondo, S., Saito, A., Hino, S., Murakami, T., Ogata, M., Kanemoto, S., Nara, S., Yamashita, A., Yoshinaga, K., Hara, H. and Imaizumi, K. BBF2H7, a novel transmembrane bZIP transcription factor, is a new type of endoplasmic reticulum stress transducer. Mol. Cell Biol. 27 (2007) 1716–1729.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang, K., Shen, X., Wu, J., Sakaki, K., Saunders, T., Rutkowski, D.T., Back, S.H. and Kaufman, R.J. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 124 (2006) 587–599.CrossRefPubMedGoogle Scholar
  25. 25.
    Stirling, J. and O’hare, P. CREB4, a transmembrane bZip transcription factor and potential new substrate for regulation and cleavage by S1P. Mol. Biol. Cell 17 (2006) 413–426.CrossRefPubMedGoogle Scholar
  26. 26.
    Asada, R., Kanemoto, S., Kondo, S., Saito, A. and Imaizumi, K. The signalling from endoplasmic reticulum-resident bZIP transcription factors involved in diverse cellular physiology. J. Biochem. 149 (2011) 507–518.CrossRefPubMedGoogle Scholar
  27. 27.
    Oh-hashi, K., Koga, H., Ikeda, S., Shimada, K., Hirata, Y. and Kiuchi, K. CRELD2 is a novel endoplasmic reticulum stress-inducible gene. Biochem. Biophys. Res. Commun. 387 (2009) 504–510.CrossRefPubMedGoogle Scholar
  28. 28.
    Oh-hashi, K., Maehara, K. and Isobe, K. Hydrogen peroxide induces GADD153 in Jurkat cells through the protein kinase C-dependent pathway. Redox Rep. 9 (2004) 173–178.CrossRefPubMedGoogle Scholar
  29. 29.
    Lindholm, P. and Saarma, M. Novel CDNF/MANF family of neurotrophic factors. Dev. Neurobiol. 70 (2010) 360–371.PubMedGoogle Scholar
  30. 30.
    Glembotski, C.C., Thuerauf, D.J., Huang, C., Vekich, J.A., Gottlieb, R.A. and Doroudgar, S. Mesencephalic astrocyte-derived neurotrophic factor (MANF) protects the heart from ischemic damage and is selectively secreted upon ER calcium depletion. J. Biol. Chem. 287 (2012) 25893–25904.CrossRefPubMedGoogle Scholar
  31. 31.
    Lee, A.H., Iwakoshi, N.N. and Glimcher, L.H. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell Biol. 23 (2003) 7448–7459.CrossRefPubMedGoogle Scholar
  32. 32.
    Murakami, T., Saito, A., Hino, S., Kondo, S., Kanemoto, S., Chihara, K., Sekiya, H., Tsumagari, K., Ochiai, K., Yoshinaga, K., Saitoh, M., Nishimura, R., Yoneda, T., Kou, I., Furuichi, T., Ikegawa, S., Ikawa, M., Okabe, M., Wanaka, A. and Imaizumi, K. Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation. Nat. Cell Biol. 11 (2009) 1205–1211.CrossRefPubMedGoogle Scholar
  33. 33.
    Namba, T., Ishihara, T., Tanaka, K., Hoshino, T. and Mizushima, T. Transcriptional activation of ATF6 by endoplasmic reticulum stressors. Biochem. Biophys. Res. Commun. 355 (2007) 543–548.CrossRefPubMedGoogle Scholar
  34. 34.
    Thuerauf, D.J., Morrison, L. and Glembotski, C.C. Opposing roles for ATF6α and ATF6β in endoplasmic reticulum stress response gene induction. J. Biol. Chem. 279 (2004) 21078–21084.CrossRefPubMedGoogle Scholar
  35. 35.
    Newman, J.R. and Keating, A.E. Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science 300 (2003) 2097–2101.CrossRefPubMedGoogle Scholar
  36. 36.
    Yoshida, H., Oku, M., Suzuki, M. and Mori, K. pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response. J. Cell. Biol. 172 (2006) 565–575.CrossRefPubMedGoogle Scholar
  37. 37.
    Yoshida, H., Uemura, A. and Mori, K. pXBP1(U), a negative regulator of the unfolded protein response activator pXBP1(S), targets ATF6 but not ATF4 in proteasome-mediated degradation. Cell Struct. Funct. 34 (2000) 1–10.CrossRefGoogle Scholar
  38. 38.
    Thuerauf, D.J., Marcinko, M., Belmont, P.J. and Glembotski, C.C. Effects of the isoform-specific characteristics of ATF6α and ATF6β on endoplasmic reticulum stress response gene expression and cell viability. J. Biol. Chem. 282 (2007) 22865–22878.CrossRefPubMedGoogle Scholar
  39. 39.
    Wang, F.M., Chen, Y.J. and Ouyang, H.J. Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation. Biochem. J. 433 (2011) 245–252.CrossRefPubMedGoogle Scholar
  40. 40.
    Luo, S. and Lee, A.S. Requirement of the p38 mitogen-activated protein kinase signalling pathway for the induction of the 78 kDa glucose-regulated protein/immunoglobulin heavy-chain binding protein by azetidine stress: activating transcription factor 6 as a target for stress-induced phosphorylation. Biochem. J. 366 (2002) 787–795.PubMedGoogle Scholar
  41. 41.
    Donati, G., Imbriano, C. and Mantovani, R. Dynamic recruitment of transcription factors and epigenetic changes on the ER stress response gene promoters. Nucleic Acids Res. 34 3116–3127.Google Scholar
  42. 42.
    Matsuda, T., Kido, Y., Asahara, S., Kaisho, T., Tanaka, T., Hashimoto, N., Shigeyama, Y., Takeda, A., Inoue, T., Shibutani, Y., Koyanagi, M., Hosooka, T., Matsumoto, M., Inoue, H., Uchida, T., Koike, M., Uchiyama, Y., Akira, S. and Kasuga, M. Ablation of C/EBPα alleviates ER stress and pancreatic β cell failure through the GRP78 chaperone in mice. J. Clin. Invest. 120 (2010) 115–126.CrossRefPubMedGoogle Scholar
  43. 43.
    Gade, P., Ramachandran, G., Maachani, U.B., Rizzo, M.A., Okada, T., Prywes, R., Cross, A.S., Mori, K. and Kalvakolanu, D.V. An IFN-γ-stimulated ATF6-C/EBP-β-signaling pathway critical for the expression of Death Associated Protein Kinase 1 and induction of autophagy. Proc. Natl. Acad. Sci. USA 109 (2012) 10316–10321.CrossRefPubMedGoogle Scholar
  44. 44.
    Li, M., Baumeister, P., Roy, B., Phan, T., Foti, D., Luo, S. and Lee, A.S. ATF6 as a transcription activator of the endoplasmic reticulum stress element: thapsigargin stress-induced changes and synergistic interactions with NF-Y and YY1. Mol. Cell. Biol. 20 (2000) 5096–5106.CrossRefPubMedGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Kentaro Oh-Hashi
    • 1
  • Yoko Hirata
    • 1
    • 2
  • Kazutoshi Kiuchi
    • 1
    • 2
  1. 1.Department of Biomolecular Science, Faculty of EngineeringGifu UniversityGifuJapan
  2. 2.United Graduate School of Drug Discovery and Medical Information SciencesGifu UniversityGifuJapan

Personalised recommendations