Cellular & Molecular Biology Letters

, Volume 14, Issue 1, pp 35–45 | Cite as

31P MRS analysis of the phospholipid composition of the peripheral blood mononuclear cells (PBMC) and bone marrow mononuclear cells (BMMC) of patients with acute leukemia (AL)

  • Małgorzata Kuliszkiewicz-Janus
  • Mariusz Adam Tuz
  • Marek Kiełbiński
  • Bożena Jaźwiec
  • Joanna Niedoba
  • Stanisław Baczyński
Short Communication
  • 144 Downloads

Abstract

The aim of this study was to evaluate the phospholipid concentration in acute leukemia (AL) blast cells from peripheral blood (PBMC) and bone marrow (BMMC). In vitro31P Nuclear Magnetic Resonance Spectroscopy (31P MRS) was used. The integral intensities of the resonant peaks and the phospholipid concentrations in PBMC and BMMC were analyzed. Differences in the phospholipid concentrations in cells from myeloblastic or lymphoblastic lines were also evaluated. This investigation was carried out on phospholipid extracts from PBMC and BMMC from 15 healthy volunteers and 77 patients with AL (samples taken at the moment of diagnosis). A significant decrease in sphingomyelin (SM) and phosphtidylserine (PS) was observed in the PBMC of patients with AL relative to the results for the healthy volunteers. For ALL, we found a significant decrease in the concentration of phosphatidylcholine plasmalogen (CPLAS), SM, PI+PE (phosphatidylinositol + phosphatidylethanolamine) and PS in comparison with the results for healthy volunteers and patients with AML. Experiments with BMMC cells revealed a significant decrease in the concentration of CPLAS, SM, PI+PE, and PS in ALL relative to AML. Additionally, a significant decrease in phosphatidylcholine (PC) concentration was observed in ALL compared to AML. If the phospholipid extracts were taken simultaneously from the same patient, there were no significant differences in the integral intensities and phospholipid concentrations between PBMC and BMMC.

Key words

Acute leukemia 31P MRS Phospholipids 

Abbreviations used

AL

acute leukemia

ALL

acute lymphoblastic leukemia

AML

acute myeloblastic leukemia

BMMC

bone marrow mononuclear cells

CL

cardiolipin

CPLAS (PAF)

phosphatidylcholine plasmalogen

FAB

French-American-British classification

MDPA

methylenediphosphonic acid

MRS

magnetic resonance spectroscopy

PBMC

peripheral blood mononuclear cells

PC

phosphatidylcholine

PS

phosphatidylserine

PI+PE

phosphatidylinositol + phosphatidylethanolamine

SM

sphingomyelin

References

  1. 1.
    Kuliszkiewicz-Janus, M. and Baczyński, S. Chemotherapy-associated changes in 31P MRS spectra of sera from patients with multiple myleoma. NMR Biomed. 8 (1995) 127–132.PubMedCrossRefGoogle Scholar
  2. 2.
    Kuliszkiewicz-Janus, M. and Baczyński, S. Application of 31P NMR spectroscopy to monitor chemotherapy-associated changes of serum phospholipids in patients with malignant lymphomas. Magn. Reson. Med. 35 (1996) 449–456.PubMedGoogle Scholar
  3. 3.
    Kuliszkiewicz-Janus, M. and Baczyński, S. Treatment induces changes in 31P MRS (magnetic resonance spectroscopy) spectra of sera from patients with acute leukemia. Biochim. Biophys. Acta 1360 (1997) 71–83.PubMedGoogle Scholar
  4. 4.
    Kuliszkiewicz-Janus, M., Janus, W. and Baczyński, S. Application of 31P NMR spectroscopy in clinical analysis of changes of serum phospholipids in leukemia, lymphoma and some other non-haematological cancers. Anticancer Res. 16 (1996) 1587–1594.PubMedGoogle Scholar
  5. 5.
    Kuliszkiewicz-Janus, M., Janus, W., Baczyński, S. and Jurczyk, A. Bone marrow transplantation In the course of hematological malignancies- fellow up to study in blond serum by 31P NMR. Med. Sci. Monit. 10 (2004) 485–492.Google Scholar
  6. 6.
    Kuliszkiewicz-Janus, M., Tuz, M.A. and Baczyński, S. Application of 31P NMR to the analysis of phospholipids changes in plasma of patients with acute leukemia. Biochim. Biophys. Acta 1737 (2005) 11–15.PubMedGoogle Scholar
  7. 7.
    Kuliszkiewicz-Janus, M. and Baczyński, S. Phospholipids’ sera and mononuclear cells in acute leukemia, malignant lymphoma and multiple myeloma - evaluation by 31P MRS in vitro. NATO Science Series. II: Mathematics, Physics and Chemistry 76 (2002) 347–354.Google Scholar
  8. 8.
    Tuz, M.A., Kuliszkiewicz-Janus, M. and Baczyński, S. Application of 31P NMR magnetic resonance spectroscopy to observation of phospholipids concentration changes in blood serum, plasma, peripheral blood mononuclear cells and bone marrow mononuclear cell from patients with hematological cancers - a methodological review. Polish J. Chem. 80 (2006) 1009–1019.Google Scholar
  9. 9.
    Kuliszkiewicz-Janus, M., Tuz, M.A., Kiełbiński, M., Baczyński, S., Jaźwiec, B. and Śladowska, H. Platelet-activating factor changes In phospholipid extracts from plasma, peripheral blood mononuclear cells and bone marrow mononuclear cell of patients with acute leukemia - A 31P NMR in vitro study. Cell. Mol. Biol. Lett. 13 (2008) 58–66.PubMedCrossRefGoogle Scholar
  10. 10.
    Kuliszkiewicz-Janus, M., Tuz, M.A., Baczyński, S., Prajs, I. and Jaźwiec, B. 31P NMR analysis of the phospholipid composition of mormal human peripheral blond mononuclear cells (PBMC). Cell. Mol. Biol. Lett. 10 (2005) 373–382.PubMedGoogle Scholar
  11. 11.
    Merchant, T.E, de Graaf, P.W., Minsky, B.D., Obertop, H. and Glonek, T. Esophageal cancer phospholipid characterization by 31P NMR. NMR Biomed. 6 (1993) 187–193.PubMedCrossRefGoogle Scholar
  12. 12.
    Merchant, T.E., Minsky, B.D., Lauwers, G.Y., Diamantis, P.M., Haida, T. and Glonek, T. Esophageal cancer phospholipids correlated with histopathologic findings: A 31P NMR study. NMR Biomed. 12 (1999) 184–188.PubMedCrossRefGoogle Scholar
  13. 13.
    van Blitterswijk, W.J., van der Luit, A.H., Veldman, R.J., Verheij, M. and Borst, J. Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem. J. 369 (2003) 199–211.PubMedCrossRefGoogle Scholar
  14. 14.
    Tepper, A.D., Ruurs, P., Wiedmer, T., Sims, P.J., Borst, J. and van Blitterswijk, W.J. Sphingomyelin hydrolysis to ceramide during the execution phase of apoptosis results from phospholipids scrambling and alters cell-surface morphology. J. Cell Biol. 150 (2000) 155–164.PubMedCrossRefGoogle Scholar
  15. 15.
    Bevers, EM., Comfurius, P., Dekkers, D.W. and Zwaal, R.F. Lipid translocation across the plasma membrane of mammalian cells. Biochim. Biophys. Acta 1439 (1999) 317–330.PubMedGoogle Scholar
  16. 16.
    Verhoven, B., Schlegel, R.A. and Williamson, P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lyphocytes. J. Exp. Med. 182 (1995) 1597–1601.PubMedCrossRefGoogle Scholar
  17. 17.
    Martin, S.J., Reutelingsperger, C.P., McGahon, A.J., Rader, J.A., van Schie, R.C., LaFace, D.M. and Green, D.R. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 182 (1995) 1545–1556.PubMedCrossRefGoogle Scholar
  18. 18.
    Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L. and Henson, P.M. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148 (1992) 2207–2216.PubMedGoogle Scholar
  19. 19.
    Kagan, V.E., Fabisiak, J.P., Shvedova, A.A., Tyurina, Y.Y., Tyurin, V.A., Schor, N.F. and Kawai, K. Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Lett. 477 (2000) 1–7.PubMedCrossRefGoogle Scholar
  20. 20.
    McConkey, D.J., Zhitovsky, B. and Orrenius, S. Apoptosis — molecular mechanisms and biomedical implications. Mol. Aspects Med. 17 (1996) 1–110.PubMedCrossRefGoogle Scholar
  21. 21.
    Eberhardt, C., Gray, P.W. and Tjoelker, L.W. Human lysophosphatidic acid acytylotransferase. CDNA clonning, expression, and localization to chromosome 9q34.3. J. Biol. Chem. 272 (1997) 20299–20305.PubMedCrossRefGoogle Scholar
  22. 22.
    Niesporek, S., Denkert, C., Weichert, W., Kobel, M., Noske, A., Sehouli, J., Singer, J.W., Dietel, M. and Hauptmann, S. Expression of lysophosphatidic acid acyltransferase beta (LPAAT-beta) in ovarian carcinoma: correlation with tumour grading and prognosis. Br. J. Cancer 92 (2005) 1729–1736.PubMedCrossRefGoogle Scholar
  23. 23.
    Springett, G.M., Bonham, L., Hummer, A., Linkov, I., Misra, D., Ma, C., Pezzoni, G., Di Giovine, S., Singer, J., Kawasaki, H., Spriggs, D., Soslow, R. and Dupont, J. Lysophosphatidic acid acyltransferase-beta is a prognostic marker and therapeutic target in gynecologic malignancies. Cancer Res. 65 (2005) 9415–9425.PubMedCrossRefGoogle Scholar
  24. 24.
    Douvas, M.G., Hogan, K.N., Ji, Y., Hollenback, D., Bonham, L., Singer, J.W. and Mitchell, B.S. Effect of lysophosphatidic acid acyltransferase-beta inhibition in acute leukemia. Leuk. Res. 30 (2006) 1027–1036.PubMedCrossRefGoogle Scholar
  25. 25.
    Ruiz-Cabello, J. and Cohen, J.S. Phospholipid metabolites as indicators of cancer cell function. NMR Biomed. 5 (1992) 226–233.PubMedGoogle Scholar
  26. 26.
    Gerhard, A., Häfer, R. and Zintl, F. Fatty acid composition of lymphocyte membrane phospholipids in children with acute leukaemia. Cancer Lett. 173 (2001) 139–144.CrossRefGoogle Scholar
  27. 27.
    Lin, W.C., Manshouri, T., Jilani, I., Neuberg, D., Patel, K., Kantarjian, H., Andreeff, M., Estrov, Z., Beran, M., Keating, M., Estey, E. and Albitar, M. Proliferation and apoptosis in acute and chronic leukemias and myelodysplastic syndrome. Leuk. Res. 26 (2002) 551–559.PubMedCrossRefGoogle Scholar
  28. 28.
    Shuler, D. and Szende, B. Apoptosis in acute leukaemia. Leuk. Res. 28 (2004) 661–666.CrossRefGoogle Scholar
  29. 29.
    Invernizzi, R., Pecci, A., Bellotti, L. and Ascari, E. Expression of p53, Bcl-2 and Ras oncoproteins and apoptosis levels in acute leukaemias and myelodysplastic syndromes. Leuk. Lymphoma 42 (2001) 481–489.PubMedCrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Małgorzata Kuliszkiewicz-Janus
    • 1
    • 2
  • Mariusz Adam Tuz
    • 1
  • Marek Kiełbiński
    • 1
  • Bożena Jaźwiec
    • 1
  • Joanna Niedoba
    • 1
  • Stanisław Baczyński
    • 3
  1. 1.Department of Haematology and TransplantologyWrocław Medical UniversityWrocławPoland
  2. 2.Academic Centre for the Biotechnology of Lipid AggregatesWrocławPoland
  3. 3.Faculty of ChemistryUniversity of WrocławWrocławPoland

Personalised recommendations