Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Go to cart
  1. Home
  2. Acta Geophysica
  3. Article
Intercomparison of Surface Energy Fluxes Estimates from the FEST-EWB and TSeB Models over the Heterogeneous REFLEX 2012 Site (Barrax, Spain)
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Assessing uncertainties in estimating surface energy fluxes from remote sensing over natural grasslands in Brazil

12 February 2022

Pâmela Suélen Käfer, Nájila Souza da Rocha, … Silvia Beatriz Alves Rolim

Comparison of two remote sensing models for estimating evapotranspiration: algorithm evaluation and application in seasonally arid ecosystems in South Africa

01 August 2019

Sebinasi Dzikiti, Nebo Z Jovanovic, … Harrison H Pienaar

The spatial variability of actual evapotranspiration across the Amazon River Basin based on remote sensing products validated with flux towers

15 February 2019

Victor Hugo da Motta Paca, Gonzalo E. Espinoza-Dávalos, … Wim G. M. Bastiaanssen

Biases in Model-Simulated Surface Energy Fluxes During the Indian Monsoon Onset Period

12 November 2018

Tirthankar Chakraborty, Chandan Sarangi, … Jonathan Evans

Estimating Evapotranspiration Using Coupled Remote Sensing and Three SEB Models in an Arid Region

29 November 2019

Ahmed Elkatoury, A. A. Alazba & Amr Mossad

Subdaily to Seasonal Change of Surface Energy and Water Flux of the Haihe River Basin in China: Noah and Noah-MP Assessment

12 November 2018

Fuqiang Yang, Li Dan, … Dongdong Gao

Evapotranspiration uncertainty at micrometeorological scales: the impact of the eddy covariance energy imbalance and correction methods

26 March 2022

N. Bambach, W. Kustas, … A. J. McElrone

Evaluating the performance of two SEB models for estimating ET based on satellite images in arid regions

10 January 2020

Ahmed Elkatoury, A. A. Alazba & Amr Abdelbary

The influence of two land-surface hydrology schemes on the regional climate of Africa using the RegCM4 model

17 July 2018

Samy A. Anwar, A.S. Zakey, … M. M. Abdel Wahab

Download PDF
  • Open Access
  • Published: 17 December 2016

Intercomparison of Surface Energy Fluxes Estimates from the FEST-EWB and TSeB Models over the Heterogeneous REFLEX 2012 Site (Barrax, Spain)

  • Chiara Corbari1,
  • Wim Timmermans2 &
  • Ana Andreu3 

Acta Geophysica volume 63, pages 1609–1638 (2015)Cite this article

  • 304 Accesses

  • 3 Citations

  • Metrics details

ab]Abstract

An intercomparison between the Energy Water Balance model (FEST-EWB) and the Two-Source Energy Balance model (TSEB) is performed over a heterogeneous agricultural area. TSEB is a residual model which uses Land Surface Temperature (LST) from remote sensing as a main input parameter so that energy fluxes are computed instantaneously at the time of data acquisition. FEST-EWB is a hydrological model that predicts soil moisture and the surface energy fluxes on a continuous basis. LST is then a modelled variable. Ground and remote sensing data from the Regional Experiments For Land-atmosphere Exchanges (REFLEX) campaign in 2012 in Barrax gave the opportunity to validate and compare spatially distributed energy fluxes. The output of both models matches the ground observations quite well. However, a spatial analysis reveals significant differences between the two approaches for latent and sensible heat fluxes over relatively small fields characterized by high heterogeneity in vegetation cover.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Anderson, M.C., J.M. Norman, W.P. Kustas, F. Li, J.H. Prueger, and J.R. Mecikalski (2005), Effects of vegetation clumping on two-source model estimates of surface energy fluxes from an agricultural landscape during SMACEX, J. Hydrometeorol. 6, 6, 892–909, DOI: 10.1175/JHM465.1.

    Article  Google Scholar 

  • Andreu, A., W.J. Timmermans, D. Skokovic, and M.P. Gonzalez-Dugo (2015), Influence of component temperature derivation from dual angle thermal infrared observations on TSEB flux estimates over an irrigated vineyard, Acta Geophys. 63, 6, 1540–1570, DOI: 10.1515/acgeo-2015-0037 (this issue).

    Article  Google Scholar 

  • Bastiaanssen, W.G.M., M. Menenti, R.A. Feddes, and A.A.M. Holtslag (1998), A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation, J. Hydrol. 212–213, 198–212, DOI: 10.1016/S0022-1694(98)00253-4.

    Article  Google Scholar 

  • Brath, A., A. Montanari, and E. Toth (2004), Analysis of the effects of different scenarios of historical data availability on the calibration of a spatially-distributed hydrological model, J. Hydrol. 291, 3–4, 232–253, DOI: 10.1016/jjhydrol.2003.12.044.

    Article  Google Scholar 

  • Brutsaert, W. (1982), Evaporation into the Atmosphere, Reidel, Dordrecht.

    Book  Google Scholar 

  • Brutsaert, W. (2005), Hydrology: An Introduction, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Cammalleri, C., M.C. Anderson, G. Ciraolo, G. D’Urso, W.P. Kustas, G. La Loggia, and M. Minacapilli (2012), Applications of a remote sensing-based two-source energy balance algorithm for mapping surface fluxes without in situ air temperature observations, Remote Sens. Environ. 124, 502–515, DOI: 10.1016/j.rse.2012.06.009.

    Article  Google Scholar 

  • Chehbouni, A., C. Watts, J.-P. Lagouarde, Y.H. Kerr, J.-C. Rodriguez, J.-M. Bonnefond, F. Santiago, G. Dedieu, D.C. Goodrich, and C. Unkrich (2000), Estimation of heat and momentum fluxes over complex terrain using a large aperture scintillometer, Agr. Forest Meteorol. 105, 1–3, 215–226, DOI: 10.1016/S0168-1923(00)00187-8.

    Article  Google Scholar 

  • Chehbouni, A., J.C.B. Hoedjes, J.-C. Rodriguez, C.J. Watts, J. Garatuza, F. Jacob, and Y.H. Kerr (2008), Using remotely sensed data to estimate area-averaged daily surface fluxes over a semi-arid mixed agricultural land, Agr. Forest Meteorol. 148, 330–342, DOI: 10.1016/j.agrformet.2007.09.014.

    Article  Google Scholar 

  • Choudhury, B.J., S.B. Idso, and R.J. Reginato (1987), Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation, Agr. Forest Meteorol. 39, 4, 283–297, DOI: 10.1016/0168-1923(87)90021-9.

    Article  Google Scholar 

  • Corbari, C., and M. Mancini (2013), Calibration and validation of a distributed energy–water balance model using satellite data of land surface temperature and ground discharge measurements, J. Hydrometeorol. 15, 1, 376-392, DOI: 10.1175/JHM-D-12-0173.1.

    Google Scholar 

  • Corbari, C., G. Ravazzani, J. Martinelli, and M. Mancini (2009), Elevation based correction of snow coverage retrieved from satellite images to improve model calibration, Hydrol. Earth Syst. Sci. 13, 639–649, DOI: 10.5194/hess-13-639-2009.

    Article  Google Scholar 

  • Corbari, C., J.A. Sobrino, M. Mancini, and V. Hidalgo (2010), Land surface temperature representativeness in a heterogeneous area through a distributed energy-water balance model and remote sensing data, Hydrol. Earth Syst. Sci. 14, 2141–2151, DOI: 10.5194/hessd-7-5335-2010.

    Article  Google Scholar 

  • Corbari, C., G. Ravazzani, and M. Mancini (2011), A distributed thermodynamic model for energy and mass balance computation: FEST-EWB, Hydrol. Process. 25, 9, 1443–1452, DOI: 10.1002/hyp.7910.

    Article  Google Scholar 

  • Corbari, C., D. Masseroni, and M. Mancini (2012), Effetto delle correzioni dei dati misurati da stazioni eddy covariance sulla stima dei flussi evapotraspirativi, Ital. J. Agrometeorol. 1, 35–51 (in Italian).

    Google Scholar 

  • Corbari, C., J.A. Sobrino, M. Mancini, and V. Hidalgo (2013), Mass and energy flux estimates at different spatial resolutions in a heterogeneous area through a distributed energy-water balance model and remote-sensing data, Int. J. Remote Sens. 34, 9–10, 3208–3230, DOI: 10.1080/01431161. 2012.716924.

    Article  Google Scholar 

  • Corbari C., D. Masseroni, A. Ceppi, A. Facchi, C. Gandolfi, and M. Mancini (2014), Comparison between high frequency and thirty minutes averaged data from eddy covariance measurements for operative water management, J. Irrig. Drainage Eng. (in review).

    Google Scholar 

  • Corbari, C., M. Mancini, Li, and Z. Su (2015), Can satellite land surface temperature data be used similarly to river discharge measurements for distributed hydrological model calibration?, Hydrol. Sci. J. 60, 2, 202–217, DOI: 10.1080/02626667.2013.866709.

    Article  Google Scholar 

  • Crow, W.T., E.F. Wood, and M. Pan (2003), Multiobjective calibration of land surface model evapotranspiration predictions using streamflow observations and spaceborne surface radiometric temperature retrievals, J. Geophys. Res. 108, D23, 4725, DOI: 10.1029/2002JD003292.

    Article  Google Scholar 

  • Crow, W.T., F. Li, and W.P. Kustas (2005), Intercomparison of spatially distributed models for predicting surface energy flux patterns during SMACEX, J. Hydrometeorol. 6, 6, 941–953, DOI: 10.1175/JHM468.1.

    Article  Google Scholar 

  • Crow, W.T., W.P. Kustas, and J.H. Prueger (2008), Monitoring root zone soil moisture though the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model, Remote Sens. Environ. 112, 4, 1268–1281, DOI: 10.1016/j.rse.2006.11.033.

    Article  Google Scholar 

  • Dai, Y., X. Zeng, R.E. Dickinson, I. Baker, G.B. Bonan, M.G. Bosilovich, A. Scott Denning, P.A. Dirmeyer, P.R. Houser, G. Niu, K.W. Oleson, C. Adam Schlosser, and Z.-L. Yang (2003), The Common Land Model, Bull. Amer. Meteor. Soc. 84, 8, 1013–1023, DOI: 10.1175/BAMS-84-8-1013.

    Article  Google Scholar 

  • de Miguel, E., M. Jiménez, I. Pérez, Ó.G. de la Cámara, F. Muñoz, and J.A. Gómez-Sánchez (2015), AHS and CASI processing for the REFLEX remote sensing campaign: methods and results, Acta Geophys. 63, 6, 1485–1498, DOI: 10.1515/acgeo-2015-0031 (this issue).

    Article  Google Scholar 

  • de Vries, D.A. (1963), Thermal properties of soils. In: W.R. van Wijk (ed.), Physics of Plant Environment, North Holland, Amsterdam, 210–233.

    Google Scholar 

  • Dooge, J.C.I. (1986), Looking for hydrologic laws, Water Resour. Res. 22, 9S, 46-58, DOI: 10.1029/WR022i09Sp0046S.

    Google Scholar 

  • Famiglietti, J.S., and E.F. Wood (1994), Multiscale modeling of spatially variable water and energy balance processes, Water Resour. Res. 30, 11, 3061–3078, DOI: 10.1029/94WR01498.

    Article  Google Scholar 

  • FAO/IIASA/ISRIC/ISSCAS/JRC (2009), Harmonized world soil database (version 1.1), FAO, Rome, Italy and IIASA, Laxenburg, Austria.

    Google Scholar 

  • Foken, T. (2008), Micrometeorology, Springer, Berlin.

    Google Scholar 

  • Franks, S.W., and K.J. Beven (1999), Conditioning a multiple-patch SVAT Model using uncertain time-space estimates of latent heat fluxes as inferred from remotely sensed data, Water Resour. Res. 35, 9, 2751–2761, DOI: 10.1029/1999WR900108.

    Article  Google Scholar 

  • French, A.N., F. Jacob, M.C. Anderson, W.P. Kustas, W. Timmermans, A. Gieske, Z. Su, Su, M.F. McCabe, F. Li, J. Prueger, and N. Brunsell (2005), Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA), Remote Sens. Environ. 99, 1–2, 55–65, DOI: 10.1016/j.rse.2005.05.015.

    Article  Google Scholar 

  • Gillespie, A., S. Rokugawa, T. Matsunaga, Cothern, S. Hook, and A.B. Kahle (1998), A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images, IEEE Geosci. Remote S. 36, 4, 1113–1126, DOI: 10.1109/36.700995.

    Article  Google Scholar 

  • Gonzalez-Dugo, M.P., C.M.U. Neale, L. Mateos, W.P. Kustas, Prueger, M.C. Anderson, and F. Li (2009), A comparison of operational remote sensing-based models for estimating crop evapotranspiration, Agr. Forest Meteorol. 149, 11, 1843–1853, DOI: 10.1016/j.agrformet.2009.06.012.

    Article  Google Scholar 

  • Gutmann, E.D., and E.E. Small (2010), A method for the determination of the hydraulic properties of soil from MODIS surface temperature for use in land-surface models, Water Resour. Res. 46, 6, W06520, DOI: 10.1029/2009WR008203.

    Article  Google Scholar 

  • Huntingford, C., S.J. Allen, and R.J. Harding (1995), An intercomparison of single and dual-source vegetation-atmosphere transfer models applied to transpiration from sahelian savannah, Bound.-Lay. Meteorol. 74, 4, 397–418, DOI: 10.1007/BF00712380.

    Article  Google Scholar 

  • Jarvis, P.G (1976), The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field, Phil. Trans. R. Soc. Lond. B 273, 593–610, DOI: 10.1098/rstb.1976.0035.

    Article  Google Scholar 

  • Kustas, W.P., and J.M. Norman (1999), Evaluation of soil and vegetation heat flux predictions using a simple two-sourcemodel with radiometric temperatures for partial canopy cover, Agr. Forest Meteorol. 94, 1, 13–29, DOI: 10.1016/S0168-1923(99)00005-2

    Article  Google Scholar 

  • Kustas, W.P., K.S. Humes, J.M. Norman, and M.S. Moran (1996), Single- and dual-source modeling of surface energy fluxes with radiometric surface temperature, J. Appl. Meteor. 35, 1, 110–121, DOI: 10.1175/1520-0450(1996) 035<0110:SADSMO>2.0.CO;2.

    Article  Google Scholar 

  • Kustas, W.P., X. Zhan, and T.J. Schmugge (1998), Combining optical and micro-wave remote sensing for mapping energy fluxes in a semiarid watershed, Remote Sens. Environ. 64, 2, 116–131, DOI: 10.1016/S0034-4257(97) 00176-4.

    Article  Google Scholar 

  • Kustas, W.P., J.H. Prueger, Hatfield, K. Ramalingam, and L. Hipps (2000), Variability in soil heat flux from a mesquite dune site, Agr. Forest Meteorol. 103, 3, 249–264, DOI: 10.1016/S0168-1923(00)00131-3.

    Article  Google Scholar 

  • Kustas, W.P., M.C. Anderson, A.N. French, and D. Vickers (2006), Using a remote sensing field experiment to investigate flux-footprint relations and flux sampling distributions for tower and aircraft-based observations, Adv. WaterResour. 29, 2, 355–368, DOI: 10.1016/j.advwatres.2005.05.003.

    Article  Google Scholar 

  • Kustas, W.P., J.G. Alfieri, M.C. Anderson, P.D. Colaizzi, J.H. Prueger, S.R. Evett, C.M.U. Neale, A.N. French, L.E. Hipps, J.L. Chavez, K.S. Copeland, and T.A. Howell (2012), Evaluating the two-source energy balance model using local thermal and surface flux observations in a strongly advective irrigated agricultural area, Adv. Water Resour. 50, 120–133, DOI: 10.1016/j.advwatres.2012.07.005.

    Article  Google Scholar 

  • Lagouarde, J.-P., F. Jacob, X.F. Gu, A. Olioso, J.-M. Bonnefond, Y. Kerr, K.J. McAneney, and M. Irvine (2002), Spatialization of sensible heat flux over a heterogeneous landscape, Agronomie 22, 6, 627–633, DOI: 10.1051/agro:2002032.

    Article  Google Scholar 

  • Lhomme, J.-P., and A. Chehbouni (1999), Comments on dual-source vegetation-atmosphere transfer models, Agr. Forest Meteorol. 94, 3–4, 269–273, DOI: 10.1016/S0168-1923(98)00109-9.

    Article  Google Scholar 

  • Liang, X., D.P. Lettenmaier, E.F. Wood, and S.J. Burges (1994), A simple hydrologically based model of land surface water and energy fluxes for GCMs, J. Geophys. Res. 99, D7, 14415–14428, DOI: 10.1029/94JD00483.

    Article  Google Scholar 

  • Mancini, M (1990), La modellazione distribuita della risposta idrologica: effetti della variabilità spaziale e della scala di rappresentazione del fenomeno dell’assorbimento, Ph.D. Thesis, Politecnico di Milano, Milan (in Italian).

    Google Scholar 

  • McCumber, M.C., and R.A. Pielke (1981) Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model: 1. Soil layer, J. Geophys. Res. 86, C10, 9929–9938, DOI: 10.1029/JC086iC10p09929.

    Article  Google Scholar 

  • Norman, J.M., W.P. Kustas, and K.S. Humes (1995), Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature, Agr. Forest Meteorol. 77, 3–4, 263–293, DOI: 10.1016/0168-1923(95)02265-Y.

    Article  Google Scholar 

  • Rabuffetti, D., G. Ravazzani, C. Corbari, and M. Mancini (2008), Verification of operational Quantitative Discharge Forecast (QDF) for a regional warning system–the AMPHORE case studies in the upper Po River, Nat. Hazards Earth Syst. Sci. 8, 161–173, DOI: 10.5194/nhess-8-161-2008.

    Article  Google Scholar 

  • Ravazzani, G., D. Rametta, and M. Mancini (2011), Macroscopic Cellular Automata for groundwater modelling: A first approach, Environ. Modell. Softw. 26, 5, 634-643, DOI: 10.1016/j.envsoft.2010.11.011.

    Google Scholar 

  • Rawls, W.J., and D.L. Brakensiek (1985), Prediction of soil water properties for hydrologic modeling. In: E.B. Jones and T.J. Ward (eds.), Watershed Management in the Eighties, A Symposium of ASCE Convention; April 30–May 1, 1985, Denver, Colorado, United States, ASCE, New York, NY, 293–299.

    Google Scholar 

  • Richter, K., and W.J. Timmermans (2009), Physically based retrieval of crop characteristics for improved water use estimates, Hydrol. Earth Syst. Sci. 13, 5, 663–674, DOI: 10.5194/hess-13-663-2009.

    Article  Google Scholar 

  • Roerink, G.J., Z. Su, and M. Menenti (2000), S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance, Phys. Chem. Earth B 25, 2, 147–157, DOI: 10.1016/S1464-1909(99)00128-8.

    Article  Google Scholar 

  • Sobrino, J.A., J.C. Jiménez-Munoz, G. Sòria, M. Gómez, A. Barella Ortiz, M. Romaguera, M. Zaragoza, Y. Julien, J. Cuenca, M. Atitar, V. Hidalgo, B. Franch, C. Mattar, A. Ruescas, L. Morales, A. Gillespie, Balick, Z. Su, F. Nerry, L. Peres, and R. Libonati (2008), Thermal remote sensing in the framework of the SEN2FLEX project: field measurements, airborne data and applications, Int. J. Remote Sens. 29, 17–18, 4961–4991, DOI: 10.1080/01431160802036516.

    Article  Google Scholar 

  • Su, Z. (2002), The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrol. Earth Syst. Sci. 6, 1, 85–100, DOI: 10.5194/hess-6-85-2002.

    Article  Google Scholar 

  • Su, Z., T. Schmugge, W.P. Kustas, and W.J. Massman (2001), An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere, J. Appl. Meteor. 40, 1933–1951, DOI: 10.1175/1520-0450(2001)040<1933:AEOTMF>2.0.CO;2.

    Article  Google Scholar 

  • Su, Z., W. Timmermans, A. Gieske, L. Jia, J.A. Elbers, A. Olioso, J. Timmermans, R. van der Velde, X. Jin, H. van der Kwast, D. Sabol, J.A. Sobrino, J. Moreno, and R. Bianchi (2008), Quantification of land-atmo sphere exchanges of water, energy and carbon dioxide in space and time over the heterogeneous Barrax site, Int. J. Remote Sens. 29, 17–18, 5215–5235, DOI: 10.1080/01431160802326099.

    Article  Google Scholar 

  • Sun, S.F. (1982), Moisture and heat transport in a soil layer forced by atmospheric conditions, M.Sc. Thesis, University of Connecticut, Storrs.

    Google Scholar 

  • Thom, A.S. (1975), Momentum, mass and heat exchange of plant communities. In: J.L. Monteith (ed.), Vegetation and Atmosphere, Academic Press, London, 57–110.

    Google Scholar 

  • Timmermans, W.J., W.P. Kustas, M.C. Anderson, and A.N. French (2007), An intercomparison of the Surface Energy Balance Algorithm for land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes, Remote Sens. Environ. 108, 4, 369–384, DOI: 10.1016/j.rse.2006.11.028.

    Article  Google Scholar 

  • Timmermans, W.J., Z. Su, and A. Olioso (2009), Footprint issues in scintillometry over heterogeneous landscapes, Hydrol. Earth Syst. Sci. 13, 11, 2179–2190, DOI: 10.5194/hess-13-2179-2009.

    Article  Google Scholar 

  • Timmermans, W.J., J.C. Jiménez-Munoz, V. Hidalgo, K. Richter, J.A. Sobrino, G. D’Urso, F. Mattia, G. Satalino, E. De Lathauwer, and V.R.N. Pauwels (2011), Estimation of the spatially distributed surface energy budget for AgriSAR 2006, Part I: Remote sensing model intercomparison, JSTARS-IEEE 4, 2, 465–481, DOI: 10.1109/JSTARS.2010.2098019.

    Google Scholar 

  • Timmermans, W., C. van der Tol, J. Timmermans, M. Ucer, X. Chen, L. Alonso, J. Moreno, A. Carrara, R. Lopez, F. de la Cruz Tercero, H.L. Corcoles, E. de Miguel, J.A.G. Sanchez, I. Pérez, B. Franch, J.-C.J. Munoz, D. Skokovic, J. Sobrino, G. Soria, A. MacArthur, L. Vescovo, I. Reusen, A. Andreu, A. Burkart, C. Cilia, S. Contreras, C. Corbari, J.F. Calleja, R. Guzinski, C. Hellmann, I. Herrmann, G. Kerr, A.-L. Lazar, B. Leutner, G. Mendiguren, S. Nasilowska, H. Nieto, J. Pachego-Labrador, S. Pulanekar, R. Raj, A. Schikling, B. Siegmann, S. von Bueren, and Z.B. Su (2015), An overview of the Regional Experiments For Land-atmosphere Exchanges 2012 (REFLEX 2012) campaign, Acta Geophys. 63, 6, 1465–1484, DOI: 10.2478/s11600-014-0254-1 (this issue).

    Google Scholar 

  • Twine, T.E., W.P. Kustas, J.M. Norman, D.R. Cook, P.R. Houser, T.P. Meyers, J.H. Prueger, P.J. Starks, and M.L. Wesely (2000), Correcting eddy-covariance flux underestimates over a grassland, Agr. Forest Meteorol. 103, 3, 279–300, DOI: 10.1016/S0168-1923(00)00123-4.

    Article  Google Scholar 

  • van der Tol, C. (2012), Validation of remote sensing of bare soil ground heat flux, Remot. Sens. Environ. 121, 275–286, DOI: 10.1016/j.rse.2012.02.009.

    Article  Google Scholar 

  • van der Tol, C., W.J. Timmermans, C. Corbari, Carrara, J. Timmermans, and Z. Su (2015), An analysis of turbulent heat fluxes and the energy balance during the REFLEX campaign, Acta Geophys. 63, 6, 1516–1539, DOI: 10.1515/acgeo-2015-0061 (this issue).

    Article  Google Scholar 

  • Verhoef, A., B.J.J.M. van den Hurk, A.F.G. Jacobs, and B.G. Heusinkveld (1996), Thermal soil properties for vineyard (EFEDA-I) and savanna (HAPEX-Sahel) sites, Agr. Forest Meteorol. 78, 1–2, 1–18, DOI: 10.1016/0168-1923(95)02254-6.

    Article  Google Scholar 

  • Wang, T., G.R. Ochs, and S.F. Clifford (1978), A saturation-resistant optical scintillometer to measure Cn2, J. Opt. Soc. Am. 68, 3, 334–338, DOI: 10.1364/JOSA.68.000334.

    Article  Google Scholar 

  • Wilson, K., A. Goldstein, E. Falge, M. Aubinet, D. Baldocchi, P. Berbigier, C. Bernhofer, R. Ceulemans, H. Dolman, C. Field, A. Grelle, A. Ibrom, B.E. Law, A. Kowalski, T. Meyers, J. Moncrieff, R. Monson, W. Oechel, J. Tenhunen, S. Verma, and R. Valentini (2002), Energy balance closure at FLUXNET sites, Agr. Forest Meteorol. 113, 1–4, 223–243, DOI: 10.1016/S0168-1923(02)00109-0.

    Article  Google Scholar 

  • Wood, E.F., D.P. Lettenmaier, X. Liang, D. Lohmann, A. Boone, S. Chang, F. Chen, Y. Dai, R.E. Dickinson, Q. Duan, M. Ek, Y.M. Gusev, F. Habets, P. Irannejad, R. Koster, K.E. Mitchel, O.N. Nasonova, J. Noilhan, J. Schaake, A. Schlosser, Y. Shao, A.B. Shmakin, D. Verseghy, K. Warrach, P. Wetzel, Y. Xue, Z.-L. Yang, and Q. Zeng (1998), The Project for Inter-comparison of Land-surface Parameterization Schemes (PILPS) Phase 2(c) Red-Arkansas river basin experiment: 1. Experiment description and summary intercomparisons, Global Planet. Change 19, 1–4, 115–135, DOI: 10.1016/S0921-8181(98)00044-7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy

    Chiara Corbari

  2. Faculty of Geo-information Science and Earth Observation, Department of Water Resources, University of Twente, Enschede, The Netherlands

    Wim Timmermans

  3. Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Sevilla, Spain

    Ana Andreu

Authors
  1. Chiara Corbari
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Wim Timmermans
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Ana Andreu
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Chiara Corbari.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corbari, C., Timmermans, W. & Andreu, A. Intercomparison of Surface Energy Fluxes Estimates from the FEST-EWB and TSeB Models over the Heterogeneous REFLEX 2012 Site (Barrax, Spain). Acta Geophys. 63, 1609–1638 (2015). https://doi.org/10.2478/s11600-014-0258-x

Download citation

  • Received: 31 January 2014

  • Revised: 19 September 2014

  • Accepted: 26 September 2015

  • Published: 17 December 2016

  • Issue Date: December 2015

  • DOI: https://doi.org/10.2478/s11600-014-0258-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • energy balance model
  • water and energy balance model
  • remote sensing
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature