Abstract
This contribution investigates two different ways for mitigating the aliasing errors in ocean tides. This is done, on the one hand, by sampling the satellite observations in another direction using the pendulum satellite mission configuration. On the other hand, a mitigation of the temporal aliasing errors in the ocean tides can be achieved by using a suitable repeat period of the sub-satellite tracks.
The findings show, firstly, that it is very beneficial for minimizing the aliasing errors in ocean tides to use pendulum configuration; secondly, optimizing the orbital parameter to get shorter repeat orbit mode can be effective in minimizing the aliasing errors. This paper recommends the pendulum as a candidate for future gravity mission to be launched in longer repeating orbit mode with shorter “sub-cycle” repeat periods to improve the temporal resolution of the satellite mission.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
Reference
Bender, P.L., J.L. Hall, J. Ye, and W.M. Klipstein (2003), Satellite-satellite laser links for future gravity missions, Space Sci. Rev. 108, 1–2, 377–384, DOI: 10.1023/A:1026195913558.
Bender, P.L., D.N. Wiese, and R.S. Nerem (2008), A possible dual-GRACE mission with 90 degree and 63 degree inclination orbits. In: Proc. Third Int. Symp. on Formation Flying, Missions and Technologies, 23–25 April 2008, Noordwijk, Netherlands, 23–25
Bezděk, A., J. Klokočnik, J. Kostelecky, R. Floberghagen, and C. Gruber (2009), Simulation of free fall and resonances in the GOCE mission, J. Geodyn. 48, 1, 47–53, DOI: 10.1016/j.jog.2009.01.007.
Elsaka, B. (2010), Simulated satellite formation flights for detecting the temporal variations of the Earth’s gravity field, Ph.D. Thesis, University of Bonn, Bonn, Germany.
Elsaka, B. (2014), Sub-monthly gravity field recovery from simulated multi-GRACE mission type, Acta Geophys. 62, 1, 241–258, DOI: 10.2478/s11600-013-0170-9.
Elsaka, B., J. Kusche, and K.-H. Ilk (2012), Recovery of the Earth’s gravity field from formation-flying satellites: Temporal aliasing issues, Adv. Space Res. 50, 11, 1534–1552, DOI: 10.1016/j.asr.2012.07.016.
Elsaka, B., J.-C. Raimondo, P. Brieden, T. Reubelt, J. Kusche, F. Flechtner, S. Iran Pour, N. Sneeuw, and J. Müller (2014a), Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation, J. Geod. 88, 1, 31–43, DOI: 10.1007/s00190-013-0665-9.
Elsaka, B., E. Forootan, and A. Alothman (2014b), Improving the recovery of monthly regional water storage using one year simulated observations of two pairs of GRACE-type satellite gravimetry constellation, J. Appl. Geophys. 109, 195–209, DOI: 10.1016/j.jappgeo.2014.07.026.
Förste, C., R. Schmidt, R. Stubenvoll, F. Flechtner, U. Meyer, R. König, H. Neumayer, R. Biancale, J.-M. Lemoine, S. Bruinsma, S. Loyer, F. Barthelmes, and S. Esselborn (2008), The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C, J. Geod. 82, 6, 331–346, DOI: 10.1007/s00190-007-0183-8.
Kaula, W.M. (1966), Theory of Satellite Geodesy. Applications of Satellites to Geodesy, Blaisdell Publ. Co., Waltham.
Kusche, J. (2007), Approximate decorrelation and non-isotropic smoothing of timevariable GRACE-type gravity field models, J. Geod. 81, 11, 733–749, DOI: 10.1007/s00190-007-0143-3.
Lyard, F., F. Lefevre, T. Letellier, and O. Francis (2006), Modelling the global ocean tides: modern insights from FES2004, Ocean Dynam. 56, 5–6, 394–415, DOI: 10.1007/s10236-006-0086-x.
Mayer-Gürr, T. (2006), Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE, Ph.D. Thesis, University of Bonn, Bonn, Germany.
Mayer-Gürr, T., A. Eicker, E. Kurtenbach, and K.-H. Ilk (2010), ITG-GRACE: Global static and temporal gravity field models from GRACE data. In: F.M. Flechtner, T. Gruber, A. Güntner, M. Mandea, M. Rothacher, T. Schöne, and J. Wickert (eds.), System Earth via Geodetic-Geophysical Space Techniques, Springer, Berlin Heidelberg, 159–168, DOI: 10.1007/978-3-642-10228-8_13.
Panet, I., J. Flury, R. Biancale, T. Gruber, J. Johannessen, M.R. van den Broeke, T. van Dam, P. Gegout, C.-W. Hughes, G. Ramillien, I. Sasgen, L. Seoane, and M. Thomas (2013), Earth system mass transport mission (e.motion): A concept for future earth gravity field measurements from space, Surv. Geophys. 34, 2, 141–163, DOI: 10.1007/s10712-012-9209-8.
Rees, W.G. (2001), Physical Principles of Remote Sensing, 2nd ed., Cambridge University Press, Cambridge, 343 pp.
Savcenko, R., and W. Bosch (2008), EOT08a–empirical ocean tide model from multi-mission satellite altimetry, Rep. No. 81, Deutsches Geodätisches Forschungsinstitut (DGFI), München, Germany.
Sharifi, M., N. Sneeuw, and W. Keller (2007), Gravity recovery capability of four generic satellite formations. In: A. Kiliçoglu, and R. Forsberg (eds.), Proc. Symp. “Gravity Field of the Earth”, General Command of Mapping, June 2007, Ankara, Turkey, Spec. Issue 18, 211–216.
Sneeuw, N., M.A. Sharifi, and W. Keller (2008), Gravity recovery from formation flight missions. In: P. Xu, J. Liu, and A. Dermanis (eds.), VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, International Association of Geodesy Symposia, Vol. 132, Springer, Berlin Heidelberg, 29–34, DOI: 10.1007/978-3-540-74584-6_5.
Swenson, S., and J. Wahr (2006), Post-processing removal of correlated errors in GRACE data, Geophys. Res. Lett. 33, 8, L08, 402, DOI: 10.1029/2005GL025285.
Tapley, B.D., S. Bettadpur, M. Watkins, and C. Reigber (2004), The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett. 31, 9, DOI: 10.1029/2004GL019920.
Visser, P.N.A.M., N. Sneeuw, T. Reubelt, M. Losch, and T. van Dam (2010), Spaceborne gravimetric satellite constellations and ocean tides: aliasing effects, Geophys. J. Int. 181, 2, 789–805, DOI: 10.1111/j.1365-246X.2010.04557.x.
Wahr, J., S. Swenson, V. Zlotnicki, and I. Velicogna (2004), Time-variable gravity from GRACE: First results, Geophys. Res. Lett. 31, 11, L11501, DOI: 10.1029/2004GL019779.
Wiese, D.N., W.M. Folkner, and R.S. Nerem (2009), Alternative mission architectures for a gravity recovery satellite mission, J. Geod. 83, 6, 569–581, DOI: 10.1007/s00190-008-0274-1.
Wiese, D.N., R.S. Nerem, and S.-C. Han (2011a), Expected improvements in determining continental hydrology, ice mass variations, ocean bottom pressure signals, and earthquakes using two pairs of dedicated satellites for temporal gravity recovery, J. Geophys. Res. 116, B11, B11405, DOI: 10.1029/2011JB008375.
Wiese, D.N., P. Visser, and R.S. Nerem (2011b), Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors, Adv. Space Res. 48, 6, 1094–1107, DOI: 10.1016/j.asr.2011.05.027.
Wiese, D.N., R.S. Nerem, and F.G. Lemoine (2012), Design considerations for a dedicated gravity recovery satellite mission consisting of two pairs of satellites, J. Geod. 86, 2, 81–98, DOI: 10.1007/s00190-011-0493-8.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Elsaka, B., Ilk, K.H. & Alothman, A. Mitigation of Oceanic Tidal Aliasing Errors in Space and Time Simultaneously Using Different Repeat Sub-Satellite Tracks from Pendulum-Type Gravimetric Mission Candidate. Acta Geophys. 63, 301–318 (2015). https://doi.org/10.2478/s11600-014-0251-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.2478/s11600-014-0251-4