Skip to main content

Mitigation of Oceanic Tidal Aliasing Errors in Space and Time Simultaneously Using Different Repeat Sub-Satellite Tracks from Pendulum-Type Gravimetric Mission Candidate


This contribution investigates two different ways for mitigating the aliasing errors in ocean tides. This is done, on the one hand, by sampling the satellite observations in another direction using the pendulum satellite mission configuration. On the other hand, a mitigation of the temporal aliasing errors in the ocean tides can be achieved by using a suitable repeat period of the sub-satellite tracks.

The findings show, firstly, that it is very beneficial for minimizing the aliasing errors in ocean tides to use pendulum configuration; secondly, optimizing the orbital parameter to get shorter repeat orbit mode can be effective in minimizing the aliasing errors. This paper recommends the pendulum as a candidate for future gravity mission to be launched in longer repeating orbit mode with shorter “sub-cycle” repeat periods to improve the temporal resolution of the satellite mission.


  • Bender, P.L., J.L. Hall, J. Ye, and W.M. Klipstein (2003), Satellite-satellite laser links for future gravity missions, Space Sci. Rev. 108, 1–2, 377–384, DOI: 10.1023/A:1026195913558.

    Article  Google Scholar 

  • Bender, P.L., D.N. Wiese, and R.S. Nerem (2008), A possible dual-GRACE mission with 90 degree and 63 degree inclination orbits. In: Proc. Third Int. Symp. on Formation Flying, Missions and Technologies, 23–25 April 2008, Noordwijk, Netherlands, 23–25

    Google Scholar 

  • Bezděk, A., J. Klokočnik, J. Kostelecky, R. Floberghagen, and C. Gruber (2009), Simulation of free fall and resonances in the GOCE mission, J. Geodyn. 48, 1, 47–53, DOI: 10.1016/j.jog.2009.01.007.

    Article  Google Scholar 

  • Elsaka, B. (2010), Simulated satellite formation flights for detecting the temporal variations of the Earth’s gravity field, Ph.D. Thesis, University of Bonn, Bonn, Germany.

    Google Scholar 

  • Elsaka, B. (2014), Sub-monthly gravity field recovery from simulated multi-GRACE mission type, Acta Geophys. 62, 1, 241–258, DOI: 10.2478/s11600-013-0170-9.

    Article  Google Scholar 

  • Elsaka, B., J. Kusche, and K.-H. Ilk (2012), Recovery of the Earth’s gravity field from formation-flying satellites: Temporal aliasing issues, Adv. Space Res. 50, 11, 1534–1552, DOI: 10.1016/j.asr.2012.07.016.

    Article  Google Scholar 

  • Elsaka, B., J.-C. Raimondo, P. Brieden, T. Reubelt, J. Kusche, F. Flechtner, S. Iran Pour, N. Sneeuw, and J. Müller (2014a), Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation, J. Geod. 88, 1, 31–43, DOI: 10.1007/s00190-013-0665-9.

    Article  Google Scholar 

  • Elsaka, B., E. Forootan, and A. Alothman (2014b), Improving the recovery of monthly regional water storage using one year simulated observations of two pairs of GRACE-type satellite gravimetry constellation, J. Appl. Geophys. 109, 195–209, DOI: 10.1016/j.jappgeo.2014.07.026.

    Article  Google Scholar 

  • Förste, C., R. Schmidt, R. Stubenvoll, F. Flechtner, U. Meyer, R. König, H. Neumayer, R. Biancale, J.-M. Lemoine, S. Bruinsma, S. Loyer, F. Barthelmes, and S. Esselborn (2008), The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C, J. Geod. 82, 6, 331–346, DOI: 10.1007/s00190-007-0183-8.

    Article  Google Scholar 

  • Kaula, W.M. (1966), Theory of Satellite Geodesy. Applications of Satellites to Geodesy, Blaisdell Publ. Co., Waltham.

    Google Scholar 

  • Kusche, J. (2007), Approximate decorrelation and non-isotropic smoothing of timevariable GRACE-type gravity field models, J. Geod. 81, 11, 733–749, DOI: 10.1007/s00190-007-0143-3.

    Article  Google Scholar 

  • Lyard, F., F. Lefevre, T. Letellier, and O. Francis (2006), Modelling the global ocean tides: modern insights from FES2004, Ocean Dynam. 56, 5–6, 394–415, DOI: 10.1007/s10236-006-0086-x.

    Article  Google Scholar 

  • Mayer-Gürr, T. (2006), Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE, Ph.D. Thesis, University of Bonn, Bonn, Germany.

    Google Scholar 

  • Mayer-Gürr, T., A. Eicker, E. Kurtenbach, and K.-H. Ilk (2010), ITG-GRACE: Global static and temporal gravity field models from GRACE data. In: F.M. Flechtner, T. Gruber, A. Güntner, M. Mandea, M. Rothacher, T. Schöne, and J. Wickert (eds.), System Earth via Geodetic-Geophysical Space Techniques, Springer, Berlin Heidelberg, 159–168, DOI: 10.1007/978-3-642-10228-8_13.

    Chapter  Google Scholar 

  • Panet, I., J. Flury, R. Biancale, T. Gruber, J. Johannessen, M.R. van den Broeke, T. van Dam, P. Gegout, C.-W. Hughes, G. Ramillien, I. Sasgen, L. Seoane, and M. Thomas (2013), Earth system mass transport mission (e.motion): A concept for future earth gravity field measurements from space, Surv. Geophys. 34, 2, 141–163, DOI: 10.1007/s10712-012-9209-8.

    Article  Google Scholar 

  • Rees, W.G. (2001), Physical Principles of Remote Sensing, 2nd ed., Cambridge University Press, Cambridge, 343 pp.

    Book  Google Scholar 

  • Savcenko, R., and W. Bosch (2008), EOT08a–empirical ocean tide model from multi-mission satellite altimetry, Rep. No. 81, Deutsches Geodätisches Forschungsinstitut (DGFI), München, Germany.

    Google Scholar 

  • Sharifi, M., N. Sneeuw, and W. Keller (2007), Gravity recovery capability of four generic satellite formations. In: A. Kiliçoglu, and R. Forsberg (eds.), Proc. Symp. “Gravity Field of the Earth”, General Command of Mapping, June 2007, Ankara, Turkey, Spec. Issue 18, 211–216.

  • Sneeuw, N., M.A. Sharifi, and W. Keller (2008), Gravity recovery from formation flight missions. In: P. Xu, J. Liu, and A. Dermanis (eds.), VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, International Association of Geodesy Symposia, Vol. 132, Springer, Berlin Heidelberg, 29–34, DOI: 10.1007/978-3-540-74584-6_5.

    Article  Google Scholar 

  • Swenson, S., and J. Wahr (2006), Post-processing removal of correlated errors in GRACE data, Geophys. Res. Lett. 33, 8, L08, 402, DOI: 10.1029/2005GL025285.

    Article  Google Scholar 

  • Tapley, B.D., S. Bettadpur, M. Watkins, and C. Reigber (2004), The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett. 31, 9, DOI: 10.1029/2004GL019920.

    Google Scholar 

  • Visser, P.N.A.M., N. Sneeuw, T. Reubelt, M. Losch, and T. van Dam (2010), Spaceborne gravimetric satellite constellations and ocean tides: aliasing effects, Geophys. J. Int. 181, 2, 789–805, DOI: 10.1111/j.1365-246X.2010.04557.x.

    Google Scholar 

  • Wahr, J., S. Swenson, V. Zlotnicki, and I. Velicogna (2004), Time-variable gravity from GRACE: First results, Geophys. Res. Lett. 31, 11, L11501, DOI: 10.1029/2004GL019779.

    Article  Google Scholar 

  • Wiese, D.N., W.M. Folkner, and R.S. Nerem (2009), Alternative mission architectures for a gravity recovery satellite mission, J. Geod. 83, 6, 569–581, DOI: 10.1007/s00190-008-0274-1.

    Article  Google Scholar 

  • Wiese, D.N., R.S. Nerem, and S.-C. Han (2011a), Expected improvements in determining continental hydrology, ice mass variations, ocean bottom pressure signals, and earthquakes using two pairs of dedicated satellites for temporal gravity recovery, J. Geophys. Res. 116, B11, B11405, DOI: 10.1029/2011JB008375.

    Article  Google Scholar 

  • Wiese, D.N., P. Visser, and R.S. Nerem (2011b), Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors, Adv. Space Res. 48, 6, 1094–1107, DOI: 10.1016/j.asr.2011.05.027.

    Article  Google Scholar 

  • Wiese, D.N., R.S. Nerem, and F.G. Lemoine (2012), Design considerations for a dedicated gravity recovery satellite mission consisting of two pairs of satellites, J. Geod. 86, 2, 81–98, DOI: 10.1007/s00190-011-0493-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Basem Elsaka.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elsaka, B., Ilk, K.H. & Alothman, A. Mitigation of Oceanic Tidal Aliasing Errors in Space and Time Simultaneously Using Different Repeat Sub-Satellite Tracks from Pendulum-Type Gravimetric Mission Candidate. Acta Geophys. 63, 301–318 (2015).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • gravity field recovery
  • repeat sub-satellite tracks
  • ocean tides aliasing