Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Acta Geophysica
  3. Article
Mitigation of Oceanic Tidal Aliasing Errors in Space and Time Simultaneously Using Different Repeat Sub-Satellite Tracks from Pendulum-Type Gravimetric Mission Candidate
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Aliasing of ocean tides in satellite gravimetry: a two-step mechanism

01 December 2021

Wei Liu & Nico Sneeuw

Benefits of combining GPS and GLONASS for measuring ocean tide loading displacement

08 July 2020

Majid Abbaszadeh, Peter J. Clarke & Nigel T. Penna

Gravity Field Recovery and Error Analysis for the MOCASS Mission Proposal Based on Cold Atom Interferometry

01 June 2021

Mirko Reguzzoni, Federica Migliaccio & Khulan Batsukh

Analysis of vertical deflections determined from one cycle of simulated SWOT wide-swath altimeter data

21 April 2022

Taoyong Jin, Mao Zhou, … Minzhang Hu

Improving estimates of ocean tide loading displacements with multi-GNSS: a case study of Hong Kong

10 December 2021

Guoguang Wei, Kejie Chen & Run Ji

Revisiting Earth tide parameters used in the development of planetary and lunar ephemeris

01 December 2022

Wei Tian

What Can We Expect from the Inclined Satellite Formation for Temporal Gravity Field Determination?

30 March 2021

Hao Zhou, Zhicai Luo, … Shanqing Yang

On evaluating the effect of assimilating glider-observed T/S profiles with different horizontal resolutions and assimilation frequencies

24 April 2020

Yuhang Zhu, Yineng Li & Shiqiu Peng

Evaluation of satellite-derived tidal constituents in the South China Sea by adopting the most suitable geophysical correction models

07 January 2020

Yanguang Fu, Dongxu Zhou, … Weikang Sun

Download PDF
  • Open Access
  • Published: 01 February 2015

Mitigation of Oceanic Tidal Aliasing Errors in Space and Time Simultaneously Using Different Repeat Sub-Satellite Tracks from Pendulum-Type Gravimetric Mission Candidate

  • Basem Elsaka1,2,
  • Karl Heinz Ilk3 &
  • Abdulaziz Alothman1 

Acta Geophysica volume 63, pages 301–318 (2015)Cite this article

  • 361 Accesses

  • 3 Citations

  • Metrics details

Abstract

This contribution investigates two different ways for mitigating the aliasing errors in ocean tides. This is done, on the one hand, by sampling the satellite observations in another direction using the pendulum satellite mission configuration. On the other hand, a mitigation of the temporal aliasing errors in the ocean tides can be achieved by using a suitable repeat period of the sub-satellite tracks.

The findings show, firstly, that it is very beneficial for minimizing the aliasing errors in ocean tides to use pendulum configuration; secondly, optimizing the orbital parameter to get shorter repeat orbit mode can be effective in minimizing the aliasing errors. This paper recommends the pendulum as a candidate for future gravity mission to be launched in longer repeating orbit mode with shorter “sub-cycle” repeat periods to improve the temporal resolution of the satellite mission.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

Reference

  • Bender, P.L., J.L. Hall, J. Ye, and W.M. Klipstein (2003), Satellite-satellite laser links for future gravity missions, Space Sci. Rev. 108, 1–2, 377–384, DOI: 10.1023/A:1026195913558.

    Article  Google Scholar 

  • Bender, P.L., D.N. Wiese, and R.S. Nerem (2008), A possible dual-GRACE mission with 90 degree and 63 degree inclination orbits. In: Proc. Third Int. Symp. on Formation Flying, Missions and Technologies, 23–25 April 2008, Noordwijk, Netherlands, 23–25

    Google Scholar 

  • Bezděk, A., J. Klokočnik, J. Kostelecky, R. Floberghagen, and C. Gruber (2009), Simulation of free fall and resonances in the GOCE mission, J. Geodyn. 48, 1, 47–53, DOI: 10.1016/j.jog.2009.01.007.

    Article  Google Scholar 

  • Elsaka, B. (2010), Simulated satellite formation flights for detecting the temporal variations of the Earth’s gravity field, Ph.D. Thesis, University of Bonn, Bonn, Germany.

    Google Scholar 

  • Elsaka, B. (2014), Sub-monthly gravity field recovery from simulated multi-GRACE mission type, Acta Geophys. 62, 1, 241–258, DOI: 10.2478/s11600-013-0170-9.

    Article  Google Scholar 

  • Elsaka, B., J. Kusche, and K.-H. Ilk (2012), Recovery of the Earth’s gravity field from formation-flying satellites: Temporal aliasing issues, Adv. Space Res. 50, 11, 1534–1552, DOI: 10.1016/j.asr.2012.07.016.

    Article  Google Scholar 

  • Elsaka, B., J.-C. Raimondo, P. Brieden, T. Reubelt, J. Kusche, F. Flechtner, S. Iran Pour, N. Sneeuw, and J. Müller (2014a), Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation, J. Geod. 88, 1, 31–43, DOI: 10.1007/s00190-013-0665-9.

    Article  Google Scholar 

  • Elsaka, B., E. Forootan, and A. Alothman (2014b), Improving the recovery of monthly regional water storage using one year simulated observations of two pairs of GRACE-type satellite gravimetry constellation, J. Appl. Geophys. 109, 195–209, DOI: 10.1016/j.jappgeo.2014.07.026.

    Article  Google Scholar 

  • Förste, C., R. Schmidt, R. Stubenvoll, F. Flechtner, U. Meyer, R. König, H. Neumayer, R. Biancale, J.-M. Lemoine, S. Bruinsma, S. Loyer, F. Barthelmes, and S. Esselborn (2008), The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C, J. Geod. 82, 6, 331–346, DOI: 10.1007/s00190-007-0183-8.

    Article  Google Scholar 

  • Kaula, W.M. (1966), Theory of Satellite Geodesy. Applications of Satellites to Geodesy, Blaisdell Publ. Co., Waltham.

    Google Scholar 

  • Kusche, J. (2007), Approximate decorrelation and non-isotropic smoothing of timevariable GRACE-type gravity field models, J. Geod. 81, 11, 733–749, DOI: 10.1007/s00190-007-0143-3.

    Article  Google Scholar 

  • Lyard, F., F. Lefevre, T. Letellier, and O. Francis (2006), Modelling the global ocean tides: modern insights from FES2004, Ocean Dynam. 56, 5–6, 394–415, DOI: 10.1007/s10236-006-0086-x.

    Article  Google Scholar 

  • Mayer-Gürr, T. (2006), Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE, Ph.D. Thesis, University of Bonn, Bonn, Germany.

    Google Scholar 

  • Mayer-Gürr, T., A. Eicker, E. Kurtenbach, and K.-H. Ilk (2010), ITG-GRACE: Global static and temporal gravity field models from GRACE data. In: F.M. Flechtner, T. Gruber, A. Güntner, M. Mandea, M. Rothacher, T. Schöne, and J. Wickert (eds.), System Earth via Geodetic-Geophysical Space Techniques, Springer, Berlin Heidelberg, 159–168, DOI: 10.1007/978-3-642-10228-8_13.

    Chapter  Google Scholar 

  • Panet, I., J. Flury, R. Biancale, T. Gruber, J. Johannessen, M.R. van den Broeke, T. van Dam, P. Gegout, C.-W. Hughes, G. Ramillien, I. Sasgen, L. Seoane, and M. Thomas (2013), Earth system mass transport mission (e.motion): A concept for future earth gravity field measurements from space, Surv. Geophys. 34, 2, 141–163, DOI: 10.1007/s10712-012-9209-8.

    Article  Google Scholar 

  • Rees, W.G. (2001), Physical Principles of Remote Sensing, 2nd ed., Cambridge University Press, Cambridge, 343 pp.

    Book  Google Scholar 

  • Savcenko, R., and W. Bosch (2008), EOT08a–empirical ocean tide model from multi-mission satellite altimetry, Rep. No. 81, Deutsches Geodätisches Forschungsinstitut (DGFI), München, Germany.

    Google Scholar 

  • Sharifi, M., N. Sneeuw, and W. Keller (2007), Gravity recovery capability of four generic satellite formations. In: A. Kiliçoglu, and R. Forsberg (eds.), Proc. Symp. “Gravity Field of the Earth”, General Command of Mapping, June 2007, Ankara, Turkey, Spec. Issue 18, 211–216.

  • Sneeuw, N., M.A. Sharifi, and W. Keller (2008), Gravity recovery from formation flight missions. In: P. Xu, J. Liu, and A. Dermanis (eds.), VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, International Association of Geodesy Symposia, Vol. 132, Springer, Berlin Heidelberg, 29–34, DOI: 10.1007/978-3-540-74584-6_5.

    Article  Google Scholar 

  • Swenson, S., and J. Wahr (2006), Post-processing removal of correlated errors in GRACE data, Geophys. Res. Lett. 33, 8, L08, 402, DOI: 10.1029/2005GL025285.

    Article  Google Scholar 

  • Tapley, B.D., S. Bettadpur, M. Watkins, and C. Reigber (2004), The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett. 31, 9, DOI: 10.1029/2004GL019920.

    Google Scholar 

  • Visser, P.N.A.M., N. Sneeuw, T. Reubelt, M. Losch, and T. van Dam (2010), Spaceborne gravimetric satellite constellations and ocean tides: aliasing effects, Geophys. J. Int. 181, 2, 789–805, DOI: 10.1111/j.1365-246X.2010.04557.x.

    Google Scholar 

  • Wahr, J., S. Swenson, V. Zlotnicki, and I. Velicogna (2004), Time-variable gravity from GRACE: First results, Geophys. Res. Lett. 31, 11, L11501, DOI: 10.1029/2004GL019779.

    Article  Google Scholar 

  • Wiese, D.N., W.M. Folkner, and R.S. Nerem (2009), Alternative mission architectures for a gravity recovery satellite mission, J. Geod. 83, 6, 569–581, DOI: 10.1007/s00190-008-0274-1.

    Article  Google Scholar 

  • Wiese, D.N., R.S. Nerem, and S.-C. Han (2011a), Expected improvements in determining continental hydrology, ice mass variations, ocean bottom pressure signals, and earthquakes using two pairs of dedicated satellites for temporal gravity recovery, J. Geophys. Res. 116, B11, B11405, DOI: 10.1029/2011JB008375.

    Article  Google Scholar 

  • Wiese, D.N., P. Visser, and R.S. Nerem (2011b), Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors, Adv. Space Res. 48, 6, 1094–1107, DOI: 10.1016/j.asr.2011.05.027.

    Article  Google Scholar 

  • Wiese, D.N., R.S. Nerem, and F.G. Lemoine (2012), Design considerations for a dedicated gravity recovery satellite mission consisting of two pairs of satellites, J. Geod. 86, 2, 81–98, DOI: 10.1007/s00190-011-0493-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Space and Aviation Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia

    Basem Elsaka & Abdulaziz Alothman

  2. National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Cairo, Egypt

    Basem Elsaka

  3. Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany

    Karl Heinz Ilk

Authors
  1. Basem Elsaka
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Karl Heinz Ilk
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Abdulaziz Alothman
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Basem Elsaka.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsaka, B., Ilk, K.H. & Alothman, A. Mitigation of Oceanic Tidal Aliasing Errors in Space and Time Simultaneously Using Different Repeat Sub-Satellite Tracks from Pendulum-Type Gravimetric Mission Candidate. Acta Geophys. 63, 301–318 (2015). https://doi.org/10.2478/s11600-014-0251-4

Download citation

  • Received: 30 October 2013

  • Revised: 19 August 2014

  • Accepted: 03 September 2014

  • Published: 01 February 2015

  • Issue Date: February 2015

  • DOI: https://doi.org/10.2478/s11600-014-0251-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keyword

  • gravity field recovery
  • repeat sub-satellite tracks
  • ocean tides aliasing
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.