Acta Geophysica

, Volume 63, Issue 1, pp 125–153 | Cite as

Study of Shallow Low-Enthalpy Geothermal Resources Using Integrated Geophysical Methods

  • Lara De Giorgi
  • Giovanni LeucciEmail author
Open Access


The paper is focused on low enthalpy geothermal exploration performed in south Italy and provides an integrated presentation of geological, hydrogeological, and geophysical surveys carried out in the area of municipality of Lecce. Geological and hydrogeological models were performed using the stratigraphical data from 51 wells. A ground-water flow (direction and velocity) model was obtained. Using the same wells data, the ground-water annual temperature was modeled. Furthermore, the ground surface temperature records from ten meteorological stations were studied. This allowed us to obtain a model related to the variations of the temperature at different depths in the subsoil. Integrated geophysical surveys were carried out in order to explore the low-enthalpy geothermal fluids and to evaluate the results of the model. Electrical resistivity tomography (ERT) and self-potential (SP) methods were used. The results obtained upon integrating the geophysical data with the models show a low-enthalpy geothermal resource constituted by a shallow ground-water system.

Key words

low enthalpy 3D geological and hydrogeological models 3D high resolution geophysics 


  1. Anderson, M.P., and W.W. Woessner (1992), Applied Groundwater Modeling: Simulation of Flow and Advective Transport, Academic Press Inc., San Diego, 381 pp.Google Scholar
  2. Andersson, O. (2007), Aquifer thermal energy storage (ATES). In: H.Ö Paksoy (ed.), Thermal Energy Storage for Sustainable Consumption, Springer, Berlin Heidelberg, 155–176, DOI: 10.1007/978-1-4020-5290-3_8.CrossRefGoogle Scholar
  3. Aubanel, E.E., and K.B. Oldham (1985), Fourier smoothing without the fast Fourier transform, Byte 10, 2, 207–218.Google Scholar
  4. Benderitter, Y., and G. Cormy (1990), Possible approach to geothermal research and relative cost estimante. In: M.H. Dickson, and M. Fanelli (eds.), Small Geothermal Resources, UNITAR/UNDP Centre for Small Energy Resources, Rome, Italy, 61–71.Google Scholar
  5. Bergkamp, G., and K. Cross (2006), Groundwater and Ecosystem Services: towards their sustainable use. In: Proc. Int. Symp. on Groundwater Sustainability (ISGWAS), Alicante, Spain, 177–193, Ponencias%20ISGWAS/13-Bergkamp.pdf.Google Scholar
  6. Binley, A., G. Cassiani, R. Middleton, and P. Winship (2002), Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging, J. Hydrol. 267, 3-4, 147–159, DOI: 10.1016/S0022-1694(02)00146-4.CrossRefGoogle Scholar
  7. Bosellini, A., F.R. Bosellini, M.L. Colalongo, M. Parente, A. Russo, and A. Vescogni (1999), Stratigraphic architecture of the Salento coast from Capo d’Otranto to S. Maria di Leuca (Apulia, southern Italy), Riv. Ital. Paleontol. S. 105, 3, 397–416.Google Scholar
  8. Bossio, A., F. Guelfi, R. Mazzei, B. Monteforti, and G. Salvatorini (1987), Studies on the Neogene and Quaternary of Salento peninsula. III–Stratigraphy of the well of Poggiardo, Quad. Ric. Centro Studi Geotecn. d’Ing. Lecce 11, 55–88 (in Italian).Google Scholar
  9. Bossio, A., R. Mazzei, B. Monteforti, and G. Salvatorini (1992), Preliminary news about the Miocene of S. Maria al Bagno–S. Caterina, at Nardo (Lecce), Paleopelagos 2, 99–107 (in Italian).Google Scholar
  10. Bossio, A., F. Guelfi, R. Mazzei, B. Monteforti, and G. Salvatorini (1994), The Miocene succession of the Calcareniti of Andrano (Puglia, southern Italy), Boll. Soc. Paleont. It. 33, 2, 249–255 (in Italian).Google Scholar
  11. Bossio, A., D. Esu, L.M. Foresi, O. Girotti, A. Iannone, E. Luperto, S. Margiotta, R. Mazzei, B. Monteforti, G. Ricchetti, and G. Salvatorini (1998), Formation of Galatone, the new name for a lithostratigraphic unit of Salento (Puglia, southern Italy), Atti Soc. Tosc. Sc. Nat. Mem. A 105, 151–156 (in Italian).Google Scholar
  12. Bossio, A., L. Foresi, S. Margiotta, R. Mazzei, B. Monteforti, and G. Salvatorini (1999), Geological map of the north east of the province of Lecce, scale of 1: 25000; sector 7, 8, 10 scale 1: 10000, Università degli Studi di Siena (in Italian).Google Scholar
  13. Cifuentes, A.O., and A. Kalbag (1992), A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis, Finite Elem. Anal. Des. 12, 3-4, 313–318, DOI: 10.1016/0168-874X(92)90040-J.CrossRefGoogle Scholar
  14. Clavier, C., G. Coates, and J. Dumanoir (1997), Theoretical and experimental bases for the dual-water model for interpretation of shaly sands. In: Proc. 52nd Annual Meeting, Society of Petroleum Engineering, Denver, USA, Rep. SPE-6859-PA, preprint 16 pp.Google Scholar
  15. Colangelo, G., V. Lapenna, A. Perrone, S. Piscitelli, and L. Telesca (2006), 2D selfpotential tomographies for studying groundwater flows in the Varco d’Izzo landslide (Basilicata, southern Italy), Eng. Geol. 88, 3, 274–286, DOI: 10.1016/j.enggeo.2006.09.014.CrossRefGoogle Scholar
  16. Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. O’Neill, J. Paruelo, R.G. Raskin, P. Sutton, and M. van den Belt (1997), The value of the world’s ecosystem services and natural capital, Nature 387, 253–260, DOI: 10.1038/387253a0.CrossRefGoogle Scholar
  17. D’Alessandro, A., G. Mastronuzzi, G. Palmentola, and P. Sansò (1994), Pleistocene deposits of Salento leccese (Southern Italy): problematic relationships, Boll. Soc. Paleont. It. 33, 2, 257–263.Google Scholar
  18. D’Alessandro, A., F. Massari, E. Davaud, and G. Ghibaudo (2004), Pliocene–Pleistocene sequences bounded by subaerial unconformities within foramol ramp calcarenites and mixed deposits (Salento, SE Italy), Sediment. Geol. 166, 1-2, 89–144, DOI: 10.1016/j.sedgeo.2003.11.017.CrossRefGoogle Scholar
  19. D’Arpa, S., N. Zaccarelli, D.E. Bruno, G. Leucci, V.F. Uricchio, and G. Zurlini (2012), A geographically weighted regression model for geothermal potential assessment in mediterranean cultural landscape. In: Proc. EGU General Assembly, 22–27 April 2012, Vienna, Austria, 12432.Google Scholar
  20. de Groot-Hedlin, C., and S. Constable (1990), Occam’s inversion to generate smooth, two-dimensional models form magnetotelluric data, Geophysics 55, 12, 1613–1624, DOI: 10.1190/1.1442813.CrossRefGoogle Scholar
  21. de Jesus, A.C. (1997), Environmental sustainability of geothermal development, Energ. Source. 19, 1, 35–47, DOI: 10.1080/00908319708908830.CrossRefGoogle Scholar
  22. de Lima Gomes, A.J., and V.M. Hamza (2005), Geothermal gradient and heat flow in the state of Rio de Janeiro, Rev. Brasil. Geofıs. 23, 4, 325–347, DOI: 10.1590/S0102-261X2005000400001.CrossRefGoogle Scholar
  23. Deiana, R., G. Cassiani, A. Kemna, A. Villa, V. Bruno, and A. Bagliani (2007), An experiment of non-invasive characterization of the vadose zone via water injection and cross-hole time-lapse geophysical monitoring, Near Surf. Geophys. 5, 3, 183–194, DOI: 10.3997/1873-0604.2006030.Google Scholar
  24. Dickson, M.H., and M. Fanelli (2004), What is Geothermal Energy? Instituo di Geoscienze e Georisorce, Pisa, Italy.Google Scholar
  25. Edwards, L.S. (1977), A modified pseudosection for resistivity and IP, Geophysics 42, 5, 1020–1036, DOI: 10.1190/1.1440762.CrossRefGoogle Scholar
  26. Falkenmark, M., and J. Rockström (2004), Balancing Water for Humans and Nature: The New Approach in Ecohydrology, Earthscan, London, 247 pp.Google Scholar
  27. FAO (2003), Groundwater Management–The Search for Practical Approaches, Water Reports 25, Food and Agriculture Organization of the United Nations, Rome, Italy.Google Scholar
  28. Griffiths, D.H., and R.D. Barker (1993), Two-dimensional resistivity imaging and modelling in areas of complex geology, J. Appl. Geophys. 29, 3–4, 211–226, DOI: 10.1016/0926-9851(93)90005-J.CrossRefGoogle Scholar
  29. Haenel, R., L. Rybach, and L. Stegena (1988), Fundamentals of geothermics. In: R. Haenel, L. Rybach, and L. Stegena (eds.), Handbook of Terrestrial Heat-Flow Density Determination, Kluwer Academic Publ., Dordrecht, 9–57, DOI: 10.1007/978-94-009-2847-3_2.CrossRefGoogle Scholar
  30. Herman, J.S., D.C. Culver, and J. Salzman (2001), Groundwater ecosystems and the service of water purification, Stanford Environ. Law J. 20, 479–495.Google Scholar
  31. Hill, H.J., O.J. Shirley, and G.E. Klein (1979), Bound water in shaley sands–its relation to Qv and other formation properties, The Log Analyst 20, 3, 3–19.Google Scholar
  32. Hillel, D. (1982), Introduction to Soil Physics, Academic Press, NewYork.Google Scholar
  33. Hochstein, M.P. (1990), Classification and assessment of geothermal resources. In: M.H. Dickson and M. Fanelli (eds.), Small Geothermal Resources–A Guide to Development and Utilization, UNITAR/UNDP Centre for Small Energy Resources, Rome, Italy, 31–59.Google Scholar
  34. Juhasz, I. (1986), Assessment of the distribution of shale, porosity and hydrocarbon saturation in shaly sands. In: Trans. Soc. Professional Well Log Analysts 10th European Formation Evaluation Symposium, Aberdeen, Scotland, Ch. 15, paper AA.Google Scholar
  35. Lee, K.C. (2001), Classification of geothermal resources by exergy, Geothermics 30, 4, 431–442, DOI: 10.1016/S0375-6505(00)00056-0.CrossRefGoogle Scholar
  36. Leucci, G., S. Margiotta, S. Negri, L. Nuzzo, P. Sansò, G. Selleri, and A. Varola (2003), Integrated geophysical, geological and geomorphological investigations for study the impact of agricultural activities on a complex karstic area. In: Proc. SAGEEP 2003, Environmental and Engineering Geophysical Society, 6–10 April 2003, Saint Antonio, USA, 1162–1179.Google Scholar
  37. Loke, M.H. (2011), Electrical imaging surveys for environmental and engineering studies. A practical guide to 2-D and 3-D surveys: RES2DINV Manual, IRIS Instruments, Scholar
  38. Loke, M.H., and R.D. Barker (1996), Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method, Geophys. Prospect. 44, 1, 131–152, DOI: 10.1111/j.1365-2478.1996.tb00142.x.CrossRefGoogle Scholar
  39. Lowrie, W. (2007), Fundamentals of Geophysics, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  40. Lund, J.W. (2007), Characteristics, development, and utilization of geothermal resources, Geo-Heat Cent. Bull. 28, 2, 1–9.Google Scholar
  41. Malanson, G.P. (1993), Riparian Landscapes, Cambridge Studies in Ecology, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  42. Malmström, V.H. (1969), A new approach to the classification of climate, J. Geogr. 68, 6, 351–357, DOI: 10.1080/00221346908981131.CrossRefGoogle Scholar
  43. Margiotta, S. (1999), The contact between the formation of Galatone and formation of Lecce: stratigraphic and sedimentological evidence, Atti Soc. Tosc. Sc. Nat. Mem. A 106, 73–77 (in Italian).Google Scholar
  44. Margiotta, S., and S. Negri (2004), In search of water lost. New knowledge subsoil in Salento Lecce, Univ. degli Studi di Lecce (in Italian).Google Scholar
  45. Margiotta, S., and G. Ricchetti (2002), Stratigraphy of oligomiocenici deposits of Salento (Puglia), Boll. Soc. Geol. It. 121, 2, 243–252 (in Italian).Google Scholar
  46. Marshall, T.J., and J.W. Holmes (1988), Soil Physics, 2nd ed., Cambridge University Press, New York, 374 pp.Google Scholar
  47. MEA (2005), Ecosystems and Human Well-Being: Wetlands and Water. Synthesis, Millennium Ecosystem Assessment, World Resources Institute, Washington, D.C.Google Scholar
  48. Meiser, P. (1962), A method of quantitative interpretation of selfpotential measurements, Geophys. Prospect. 10, 2, 203–218, DOI: 10.1111/j.1365-2478.1962.tb02009.x.CrossRefGoogle Scholar
  49. Meyers, R.A. (ed.) (1992), Encyclopedia of Physical Science and Technology, Academic Press, San Diego.Google Scholar
  50. Morris, B.L., A.R.L. Lawrence, P.J.C. Chilton, B. Adams, R.C. Calow, and B.A. Klinck (2003), Groundwater and its susceptibility to degradation: A global assessment of the problem and options for management, Early Warning and Assessment Report series, RS 03-3, United Nations Environment Programme, Nairobi, Kenya.Google Scholar
  51. Muffler, P., and R. Cataldi (1978), Methods for regional assessment of geothermal resources, Geothermics 7, 2-4, 53–89, DOI: 10.1016/0375-6505(78)90002-0.CrossRefGoogle Scholar
  52. Paul, M.K. (1965), Direct interpretation of self-potential anomalies caused by inclined sheets of infinite horizontal extensions, Geophysics 30, 3, 418–423, DOI: 10.1190/1.1439596.CrossRefGoogle Scholar
  53. Perrier, F.E., G. Petiau, G. Clerc, V. Bogorodsky, E. Erkul, L. Jouniaux, D. Lesmes, J. Macnae, J.M. Meunier, D. Morgan, D. Nascimento, G. Oettinger, G. Schwarz, H. Toh, M.J. Valiant, K. Vozoff, and O. Yazici-Cakin (1997), A one-year systematic study of electrodes for long period measurements of the electric field in geophysical environments, J. Geomagn. Geoelectr. 49, 11-12, 1677–1696, DOI: 10.5636/jgg.49.1677.CrossRefGoogle Scholar
  54. Pike, J.G. (1964), The estimation of annual run-off from meteorological data in a tropical climate, J. Hydrol. 2, 2, 116–123, DOI: 10.1016/0022-1694(64)90022-8.CrossRefGoogle Scholar
  55. Reynolds, J.M. (1998), An Introduction to Applied and Environmental Geophysics, John Wiley & Sons Ltd., Chichester.Google Scholar
  56. Shaw, E.M. (1994), Hydrology in Practice, 3rd ed., Chapman and Hall, London.Google Scholar
  57. Sileo, M. (2011), Individuazione e caratterizzazione geologica, chimico-mineralogica e petrofisica di calcareniti tenere della Puglia e della Basilicata in relazione alle problematiche di provenienza e conservazione dei Beni Culturali, Ph.D. Thesis, University of Basilicata, Potenza, Italy (in Italian).Google Scholar
  58. Telford, W.M., L.P. Geldart, and R.E. Sheriff (1990), Applied Geophysics, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  59. Vichabian, Y., and F.D. Morgan (2002), Self potentials in cave detection, The Leading Edge 21, 9, 866–871, DOI: 10.1190/1.1508953.CrossRefGoogle Scholar
  60. Ward, R.C., and M. Robinson (1990), Principles of Hydrology, 3rd ed., McGraw–Hill Book Co., London.Google Scholar
  61. Williamson, L., and N. McCormick (2008), Energy, ecosystems and livelihoods: understanding linkages in the face of climate change impacts, International Union for Conservation of Nature (IUCN), https://www.iucn.orgabout/ work/Initiatives/energy_welcome/index.cfm?uNewsID=1646.Google Scholar
  62. Wu, J., and D.L. Nofziger (1999), Incorporating temperature effects on pesticide degradation into a management model, J. Environ. Qual. 28, 1, 92–100, DOI: 10.2134/jeq1999.00472425002800010010x.CrossRefGoogle Scholar
  63. Zienkiewicz, O.C., and R.L. Taylor (1989), The Finite Element Method: Basic Formulation and Linear Problems, McGraw–Hill Book Co., London, 648 pp.Google Scholar

Copyright information

© De Giorgi and Leucci 2015

Authors and Affiliations

  1. 1.IBAM–National Council of ResearchLecceItaly

Personalised recommendations