Advertisement

Acta Geophysica

, Volume 62, Issue 5, pp 1127–1145 | Cite as

Separation of time scales in the HCA model for sand

  • Andrzej NiemunisEmail author
  • Torsten Wichtmann
Article

Abstract

Separation of time scales is used in a high cycle accumulation (HCA) model for sand. An important difficulty of the model is the limited applicability of the Miner’s rule to multiaxial cyclic loadings applied simultaneously or in a combination with monotonic loading. Another problem is the lack of simplified objective HCA formulas for geotechnical settlement problems. Possible solutions of these problems are discussed.

Key words

high cycle model accumulation time scale separation constitutive modelling sand 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hettler, A. (1981), Verschiebungen starrer und elastischer Gründungskörper in Sand bei monotoner und zyklischer Belastung, Ph.D. Thesis, Institut für Boden- und Felsmechanik der Universität Karlsruhe, Heft Nr. 90.Google Scholar
  2. Miner, M.A. (1945), Cumulative damage in fatigue, J. Appl. Mech. 12,3, 159–164.Google Scholar
  3. Morland, L.W., and A. Sawicki (1983), Amixture model for the compaction of saturated sand, Mech. Mater. 2,3, 203–216, DOI: 10.1016/0167-6636(83)90015-7.CrossRefGoogle Scholar
  4. Morland, L.W., and Sawicki (1985), A model for compaction and shear hysteresis in saturated granular materials, J. Mech. Phys. Solids 33,1, 1–24, DOI: 10.1016/0022-5096(85)90019-5.CrossRefGoogle Scholar
  5. Mróz, Z., and V.A. Norris (1982), Elastoplastic and viscoplastic constitutive models for soils with application to cyclic loading. In: G.N. Pande and O.C. Zienkiewicz (eds.), Soil Mechanics — Transient and Cyclic Loads, 173–218, John Wiley and Sons, Chichester.Google Scholar
  6. Niemunis, A., and I. Herle (1997), Hypoplastic model for cohesionless soils with elastic strain range, Mech. Cohes.-Frict. Mat. 2,4, 279–299, DOI: 10.1002/(SICI)1099-1484(199710)2:4〈279::AID-CFM29〉3.0.CO;2-8.Google Scholar
  7. Niemunis, A., T. Wichtmann, and Th. Triantafyllidis (2005), A high-cycle accumulation model for sand, Comput. Geotech. 32,4, 245–263, DOI: 10.1016/j.compgeo.2005.03.002.CrossRefGoogle Scholar
  8. Niemunis, A., T. Wichtmann, and Th. Triantafyllidis (2007), On the definition of the fatigue loading for sand. In: J.-H. Yin, X.S. Li, A.T. Yeung, and C.S. Desai (eds.), InternationalWorkshop on Constitutive Modelling-Development, Implementation, Evaluation and Application, 12–13 January 2007, Hong Kong, 399–404.Google Scholar
  9. Niemunis, A., L.F. Prada-Sarmiento, and C.E. Grandas-Tavera (2011), Paraelasticity, Acta Geotech. 6,2, 67–80, DOI: 10.1007/s11440-011-0137-4.CrossRefGoogle Scholar
  10. O’Riordan, N.J. (1991), Effects of cyclic loading on the long term settlement of structures. In: M.P. O’Reilly and S.F. Brown (eds.), Cyclic Loading of Soils: From Theory to Design, Chapman & Hall, London, 411–433.Google Scholar
  11. Sawicki, A. (1991), Mechanika gruntów dla obciaążen cyklicznych, Wydawnictwo IBW PAN, Gdansk (in Polish).Google Scholar
  12. Solf, O. (2012), Zum mechanischen Verhalten von zyklisch belasteten Offshore-Gründungen, Ph.D. Thesis, Institut für Boden- und Felsmechanik der Universität Karlsruhe (TH), Heft Nr. 176 (in German).Google Scholar
  13. Suiker, A.S.J. (1998), Fatigue behaviour of granular materials, Tech. Rep. 7-98-119-3, Delft University of Technology, Faculty of Civil Engineering, Delft, The Netherlands.Google Scholar
  14. Wichtmann, T. (2005) Explicit accumulation model for non-cohesive soils under cyclic loading, Ph.D. Thesis, Ruhr-University Bochum, Heft Nr. 38.Google Scholar
  15. Wichtmann, T., A. Niemunis, and Th. Triantafyllidis (2005), Strain accumulation in sand due to cyclic loading: drained triaxial tests, Soil Dyn. Earthq. Eng. 25,12, 967–979, DOI: 10.1016/j.soildyn.2005.02.022.CrossRefGoogle Scholar
  16. Wichtmann, T., A. Niemunis, and Th. Triantafyllidis (2009), Validation and calibration of a high-cycle accumulation model based on cyclic triaxial tests on eight sands, Soils Found. 49,5, 711–728, DOI: 10.3208/sandf.49.711.CrossRefGoogle Scholar
  17. Wichtmann, T., A. Niemunis, and Th. Triantafyllidis (2010a), Towards the FE prediction of permanent deformations of offshore wind power plant foundations using a high-cycle accumulation model. In: Int. Symp. Frontiers in Offshore Geotechnics, Perth, Australia 2010, 635–640.Google Scholar
  18. Wichtmann, T., A. Niemunis, and Th. Triantafyllidis (2010b), Strain accumulation in sand due to drained cyclic loading: on the effect of monotonic and cyclic preloading (Miner’s rule), Soil Dyn. Earthq. Eng. 30,8, 736–745, DOI: 10.1016/j.soildyn.2010.03.004.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Institute of Soil Mechanics and Rock MechanicsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations