Skip to main content
Log in

Equivalent water height extracted from GRACE gravity field model with robust independent component analysis

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The Level-2 monthly GRACE gravity field models issued by Center for Space Research (CSR), GeoForschungs Zentrum (GFZ), and Jet Propulsion Laboratory (JPL) are treated as observations used to extract the equivalent water height (EWH) with the robust independent component analysis (RICA). The smoothing radii of 300, 400, and 500 km are tested, respectively, in the Gaussian smoothing kernel function to reduce the observation Gaussianity. Three independent components are obtained by RICA in the spatial domain; the first component matches the geophysical signal, and the other two match the north-south strip and the other noises. The first mode is used to estimate EWHs of CSR, JPL, and GFZ, and compared with the classical empirical decorrelation method (EDM). The EWH STDs for 12 months in 2010 extracted by RICA and EDM show the obvious fluctuation. The results indicate that the sharp EWH changes in some areas have an important global effect, like in Amazon, Mekong, and Zambezi basins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baur, O., M. Kuhn, and W.E. Featherstone (2009), GRACE-derived ice-mass variations over Greenland by accounting for leakage effects, J. Geophys. Res. 114,B6, B06407, DOI: 10.1029/2008JB006239.

    Google Scholar 

  • Bell, A.J., and T.J. Sejnowski (1995), An information-maximization approach to blind separation and blind deconvolution, Neural Comput. 7,6, 1129–1159, DOI: 10.1162/neco.1995.7.6.1129.

    Article  Google Scholar 

  • Bettadpur, S. (2012a), GRACE 327-720 (CSR-GR-03-02), Product specification document, Rev. 4.6, Center for Space Research, The University of Texas at Austin.

    Google Scholar 

  • Bettadpur, S. (2012b), UTCSR Level-2 processing standards document for Level-2 product release 0005, GRACE 327-742, Rev. 4.0, Center for Space Research, The University of Texas at Austin.

    Google Scholar 

  • Chambers, D.P. (2006), Evaluation of new GRACE time-variable gravity data over the ocean, Geophys. Res. Lett. 33,17, L17603, DOI: 10.1029/2006GL027296.

    Article  Google Scholar 

  • Chen, J.L., C.R. Wilson, B.D. Tapley, Z.L. Yang, and G.Y. Niu (2009), 2005 drought event in the Amazon River Basin as measured by GRACE and estimated by climate models, J. Geophys. Res. 114,B5, B05404, DOI: 10.1029/2008JB006056.

    Google Scholar 

  • Dahle, C., F. Flechtner, C. Gruber, D. König, R. König, G. Michalak, and K.-H. Neumayer (2012), GFZ GRACE Level-2 processing standards document for Level-2 product release 0005, Sci. Tech. Rep. 12/02, GFZ German Research Centre for Geosciences, Potsdam, DOI: 10.2312/GFZ.b103-12020.

    Google Scholar 

  • Davis, J.L., M.E. Tamisiea, P. Elósegui, J.X. Mitrovica, and E.M. Hill (2008), A statistical filtering approach for Gravity Recovery and Climate Experiment (GRACE) gravity data, J. Geophys. Res. 113,B4, B04410, DOI: 10.1029/2007JB005043.

    Google Scholar 

  • Duan, X.J., J.Y. Guo, C.K. Shum, and W. van der Wal (2009), On the postprocessing removal of correlated errors in GRACE temporal gravity field solutions, J. Geod. 83,11, 1095–1106, DOI: 10.1007/s00190-009-0327-0.

    Article  Google Scholar 

  • Eshagh, M., J.M. Lemoine, P. Gegout, and R. Biancale (2013), On regularized time varying gravity field models based on GRACE data and their comparison with hydrological models, Acta Geophys. 61,1, 1–17, DOI: 10.2478/s11600-012-0053-5.

    Article  Google Scholar 

  • Feng, W., J.M. Lemoine, M. Zhong, and T.T. Hsu (2012), Terrestrial water storage changes in the Amazon basin measured by GRACE during 2002–2010, Chinese J. Geophys. 55,3, 814–812, DOI: 10.6038/j.issn.0001-5733.2012.03.011 (in Chinese).

    Google Scholar 

  • Forootan, E., and J. Kusche (2012), Separation of global time-variable gravity signals into maximally independent components, J. Geod. 86,7, 477–497, DOI: 10.1007/s00190-011-0532-5.

    Article  Google Scholar 

  • Forootan, E., and J. Kusche (2013), Separation of deterministic signals using independent component analysis (ICA), Stud. Geophys. Geod. 57,1, 17–26, DOI: 10.1007/s11200-012-0718-1.

    Article  Google Scholar 

  • Frappart, F., G. Ramillien, P. Maisongrande, and M.-P. Bonnet (2010), Denoising satellite gravity signals by independent component analysis, IEEE Geosci. Remote Sens. Lett. 7,3, 421–425, DOI: 10.1109/LGRS.2009.2037837.

    Article  Google Scholar 

  • Frappart, F., G. Ramillien, M. Leblanc, S.O. Tweed, M.-P. Bonnet, and P. Maisongrande (2011), An independent component analysis filtering approach for estimating continental hydrology in the GRACE gravity data, Remote Sens. Environ. 115,1, 187–204, DOI: 10.1016/j.rse.2010.08.017.

    Article  Google Scholar 

  • Han, S.-C., C.K. Shum, C. Jekeli, and D. Alsdorf (2005), Improved estimation of terrestrial water storage changes from GRACE, Geophys. Res. Lett. 32,7, L0732, DOI: 10.1029/2005GL022382.

    Article  Google Scholar 

  • Huang, J., J. Halpenny, W. van der Wal, C. Klatt, T.S. James, and A. Rivera (2012), Detectability of groundwater storage change within the Great Lakes Water Basin using GRACE, J. Geophys. Res. 117,B8, B08401, DOI: 10.1029/2011JB008876.

    Google Scholar 

  • Hyvärinen, A., and E. Oja (2000), Independent component analysis: algorithms and applications, Neural Networks 13,4–5, 411–430, DOI: 10.1016/S0893-6080(00)00026-5.

    Article  Google Scholar 

  • Ivins, E.R., T.S. James, J. Wahr, E.J.O. Schrama, F.W. Landerer, and K.M. Simon (2013), Antarctic contribution to sea level rise observed by GRACE with improved GIA correction, J. Geophys. Res. 118,6, 3126–3141, DOI: 10.1002/jgrb.50208.

    Article  Google Scholar 

  • Jekeli, C. (1981), Alternative methods to smooth the Earth’s gravity field, Rep. 327, Dept. Sci. Surv., Ohio State University, Columbus, USA.

    Google Scholar 

  • Jutten, C., and J. Herault (1991), Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture, Signal Process. 24,1, 1–10, DOI: 10.1016/0165-1684(91)90079-X.

    Article  Google Scholar 

  • Kusche, J. (2007), Approximate decorrelation and non-isotropic smoothing of timevariable GRACE-type gravity field models, J. Geod. 81,11, 733–749, DOI: 10.1007/s00190-007-0143-3.

    Article  Google Scholar 

  • Luo, Z.C., Q. Li, and B. Zhong (2012), Water storage variations in Heihe River Basin recovered from GRACE temporal gravity field, Acta Geod. Cartogr. Sin. 41, 676–681 (in Chinese).

    Google Scholar 

  • Schrama, E.J.O., and B. Wouters (2011), Revisiting Greenland ice sheet mass loss observed by GRACE, J. Geophys. Res. 116,B2, B02407, DOI: 10.1029/2009JB006847.

    Google Scholar 

  • Schrama, E.J.O., B. Wouters, and D.A. Lavallée (2007), Signal and noise in Gravity Recovery and Climate Experiment (GRACE) observed surface mass variations, J. Geophys. Res. 112,B8, B084407, DOI: 10.1029/2006JB004882.

    Google Scholar 

  • Stone, J.V. (2004), Independent Component Analysis: A Tutorial Introduction, MIT Press, 193 pp.

    Google Scholar 

  • Swenson, S., and J. Wahr (2002), Methods for inferring regional surface-mass anomalies form Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity, J. Geophys. Res. 107,B9, 2193, DOI: 10.1029/2001JB000576.

    Article  Google Scholar 

  • Swenson, S., and J. Wahr (2006), Post-processing removal of correlated errors in GRACE data, Geophys. Res. Lett. 33,8, L08402, DOI: 10.1029/2005GL025285.

    Article  Google Scholar 

  • Velicogna, I. (2009), Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE, Geophys. Res. Lett. 36,19, L19503, DOI: 10.1029/2009GL04022.

    Article  Google Scholar 

  • Wahr, J., M. Molenaar, and F. Bryan (1998), Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res. 103,B12, 30205–30229, DOI: 10.1029/98JB02844.

    Article  Google Scholar 

  • Wahr, J., S. Swenson, and I. Velicogna (2006), Accuracy of GRACE mass estimates, Geophys. Res. Lett. 33,6, L06401, DOI: 10.1029/2005GL025305.

    Article  Google Scholar 

  • Wang, H.-S., Z.-Y. Wang, X.-D. Yuan, P. Wu, and E. Rangelova (2007), Water storage changes in Three Gorges water systems area inferred from GRACE time-variable gravity data, Chinese J. Geophys. 50,3, 650–657, DOI: 10.1002/cjg2.1078.

    Article  Google Scholar 

  • Watkins, M. (2012), JPL Level-2 processing standards document for Level-2 product release 05, GRACE 327-741, Rev. 4.0, Jet Propulsion Laboratory, Pasadena, USA.

    Google Scholar 

  • Werth, S., A. Güntner, R. Schmidt, and J. Kusche (2009), Evaluation of GRACE filter tools from a hydrological perspective, Geophys. J. Int. 179,3, 1499–1515, DOI: 10.1111/j.1365-246X.2009.04355.x.

    Article  Google Scholar 

  • Wouters, B., and E.J.O. Schrama (2007), Improved accuracy of GRACE gravity solutions through empirical orthogonal function filtering of spherical harmonics, Geophys. Res. Lett. 34,23, L23711, DOI: 10.1029/2007GL032098.

    Article  Google Scholar 

  • Wouters, B., D. Chambers, and E.J.O. Schrama (2008), GRACE observes smallscale mass loss in Greenland, Geophys. Res. Lett. 35,20, L20501, DOI: 10.1029/2008GL034816.

    Article  Google Scholar 

  • Zarzoso, V., and P. Comon (2010), Robust independent component analysis by iterative maximization of the kurtosis contrast with algebraic optimal step size, IEEE Trans. Neural Networks 21,2, 248–261, DOI: 10.1109/TNN.2009.2035920.

    Article  Google Scholar 

  • Zhan, J.G., Y. Wang, and X.G. Hao (2011), Improved method for removal of correlated errors in GRACE data, Acta Geod. Cartogr. Sin. 40, 442–446 (in Chinese).

    Google Scholar 

  • Zhou, X.-H., B. Wu, B.-B. Peng, and H.-Z. Xsu (2006), Detection of global water storage variation using GRACE, Chinese J. Geophys. 49,6, 1500–1507, DOI: 10.1002/cjg2.977.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyun Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Mu, D., Liu, X. et al. Equivalent water height extracted from GRACE gravity field model with robust independent component analysis. Acta Geophys. 62, 953–972 (2014). https://doi.org/10.2478/s11600-014-0210-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-014-0210-0

Key words

Navigation