Skip to main content

Shear wave velocity prediction using seismic attributes and well log data

Abstract

Formation’s properties can be estimated indirectly using joint analysis of compressional and shear wave velocities. Shear wave data is not usually acquired during well logging, which is most likely for cost saving purposes. Even if shear data is available, the logging programs provide only sparsely sampled one-dimensional measurements: this information is inadequate to estimate reservoir rock properties. Thus, if the shear wave data can be obtained using seismic methods, the results can be used across the field to estimate reservoir properties. The aim of this paper is to use seismic attributes for prediction of shear wave velocity in a field located in southern part of Iran. Independent component analysis (ICA) was used to select the most relevant attributes to shear velocity data. Considering the nonlinear relationship between seismic attributes and shear wave velocity, multi-layer feed forward neural network was used for prediction of shear wave velocity and promising results were presented.

This is a preview of subscription content, access via your institution.

References

  • Ameen, M.S., B.G.D. Smart, J.M. Somerville, S. Hammilton, and N.A. Naji (2009), Predicting rock mechanical properties of carbonates from wireline logs (A case study: Arab-D reservoir, Ghawar field, Saudi Arabia), Mar. Petrol. Geol. 26,4, 430–444, DOI: 10.1016/j.marpetgeo.2009.01.017.

    Article  Google Scholar 

  • Barnes, A.E. (1997), Genetic classification of complex seismic trace attributes. In: Proc. 67th Annual Meeting, Society of Exploration Geophysicists, 2–7 November 1997, Dallas, USA, Conf. paper SEG-1997-1151, 1151–1154.

    Google Scholar 

  • Barnes, A.E. (2000), Attributes for automating seismic facies analysis. In: Proc. 70th Annual Meeting, Society of Exploration Geophysicists, 6–11 August 2000, Calgary, Canada, Conf. paper SEG-2000-0553, 553–556.

    Google Scholar 

  • Bell, A.J., and T.J. Sejnowski (1997), The “independent components” of natural scenes are edge filters, Vision Res. 37,23, 3327–3338, DOI: 10.1016/S0042-6989(97)00121-1.

    Article  Google Scholar 

  • Birch, F. (1960), The velocity of compressional waves in rocks to 10 kbars — Part 1, J. Geophys. Res. 65,4, 1083–1102, DOI: 10.1029/JZ065i004p01083.

    Article  Google Scholar 

  • Brocher, T.M. (2005), Empirical relations between elastic wavespeeds and density in the earth’s crust, Bull. Seismol. Soc. Am. 95,6, 2081–2092, DOI: 10.1785/0120050077.

    Article  Google Scholar 

  • Brocher, T.M. (2008), Key elements of regional seismic velocity models for long period ground motion simulations, J. Seismol. 12,2, 217–221, DOI: 10.1007/s10950-007-9061-3.

    Article  Google Scholar 

  • Brown, A.R. (1996), Seismic attributes and their classification, The Leading Edge 15,10, 1090–1090, DOI: 10.1190/1.1437208.

    Article  Google Scholar 

  • Brown, A.R. (2004), Interpretation of Three-Dimensional Seismic Data, 6th ed., AAPG Memoir 42, American Association of Petroleum Geologists, Tulsa.

    Google Scholar 

  • Burlini, L., and D.M. Fountain (1993), Seismic anisotropy of metapelites from the Ivrea-Verbano zone and Serie dei Laghi (northern Italy), Phys. Earth Planet. In. 78,3–4, 301–317, DOI: 10.1016/0031-9201(93)90162-3.

    Article  Google Scholar 

  • Carroll, R.D. (1969), The determination of the acoustic parameters of volcanic rocks from compressional velocity measurements, Int. J. Rock Mech. Min. 6,6, 557–579, DOI: 10.1016/0148-9062(69)90022-9.

    Article  Google Scholar 

  • Castagna, J.P., M.L. Batzle, and T.K. Kan (1993), Rock physics — The link between rock properties and avo response. In: J.P. Castagna and M.M. Backus (eds.), Offset-Dependent Reflectivity — Theory and Practice of AVO Analysis, Society of Exploration Geophysicists, 135–171.

    Chapter  Google Scholar 

  • Chao, W., Ch. Mian, and J. Yan (2009), A prediction method of borehole stability based on seismic attribute technology, J. Petrol. Sci. Eng. 65,3–4, 208–216, DOI: 10.1016/j.petrol.2008.12.033.

    Article  Google Scholar 

  • Chen, Q., and S. Sidney (1997), Seismic attribute technology for reservoir forecasting and monitoring, The Leading Edge 16,5, 445–448, DOI: 10.1190/1.1437657.

    Article  Google Scholar 

  • Christensen, N.I. (1974), Compressional wave velocities in possible mantle rocks to pressures of 30 kilobars, J. Geophys. Res. 79,2, 407–412, DOI: 10.1029/JB079i002p00407.

    Article  Google Scholar 

  • Comon, P. (1994), Independent component analysis, a new concept? Signal Process. 36,3, 287–314, DOI: 10.1016/0165-1684(94)90029-9.

    Article  Google Scholar 

  • Cosentino, L. (2001), Integrated Reservoir Studies, Editions Technip, Paris.

    Google Scholar 

  • Eberhart-Phillips, D., D.-H. Han, and M.D. Zoback (1989), Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone, Geophysics 54,1, 82–89, DOI: 10.1190/1.1442580.

    Article  Google Scholar 

  • Gassmann, F. (1951), Elasticity of porous media, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 96,1, 1–23 (in German).

    Google Scholar 

  • Greenberg, M.L., and J.P. Castagna (1992), Shear-wave velocity estimation in porous rocks: theoretical formulation, preliminary verification and applications, Geophys. Prospect. 40,2, 195–209, DOI: 10.1111/j.1365-2478.1992.tb00371.x.

    Article  Google Scholar 

  • Hampson, D.P., J.S. Schuelke, and J.A. Quirein (2001), Use of multiattribute transforms to predict log properties from seismic data, Geophysics 66,1, 220–236, DOI: 10.1190/1.1444899.

    Article  Google Scholar 

  • Hart, B.S., and R.S. Balch (2000), Approaches to defining reservoir physical properties from 3-D seismic attributes with limited well control: An example from the Jurassic Smackover Formation, Alabama, Geophysics 65,2, 368–376, DOI: 10.1190/1.1444732.

    Article  Google Scholar 

  • Hyvärinen, A. (1999a), Survey on independent component analysis, Neural. Comput. Surv. 2, 94–128.

    Google Scholar 

  • Hyvärinen, A. (1999b), Fast and robust fixed-point algorithms for independent component analysis, IEEE Trans. Neural Networks. 10,3, 626–634, DOI: 10.1109/72.761722.

    Article  Google Scholar 

  • Hyvärinen, A., and E. Oja (2000), Independent component analysis: algorithms and applications, Neural Networks 13,4–5, 411–430, DOI: 10.1016/S0893-6080(00)00026-5.

    Article  Google Scholar 

  • Ji, S.C., and M.H. Salisbury (1993), Shear-wave velocities, anisotropy and splitting in high-grade mylonites, Tectonophysics 221,3–4, 453–473, DOI: 10.1016/0040-1951(93)90173-H.

    Article  Google Scholar 

  • Ji, S.C., Q. Wang, and B. Xia (2002), Handbook of Seismic Properties of Minerals, Rocks and Ores, Polytechnic International Press, Montreal, 630 pp.

    Google Scholar 

  • Kalkomey, C.T. (1997), Potential risks when using seismic attributes as predictors of reservoir properties, The Leading Edge 16,3, 247–251, DOI: 10.1190/1.1437610.

    Article  Google Scholar 

  • Kern, H. (1982), P- and S-wave velocities in crustal and mantle rocks under the simultaneous action of high confining pressure and high temperature and the effect of the rock microstructure. In: W. Schreyer (ed.), High-Pressure Researches in Geoscience, E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 15–45.

    Google Scholar 

  • Khademi, J., K. Shahriar, B. Rezai, and J. Rostami (2010), Performance prediction of hard rock TBM using Rock Mass Rating (RMR) system, Tunn. Undergr. Sp. Tech. 25,4, 333–345, DOI: 10.1016/j.tust.2010.01.008.

    Article  Google Scholar 

  • Krief, M., J. Garat, J. Stellingwerff, and J. Ventre (1990), A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic), The Log Analyst 31,8, 355–369.

    Google Scholar 

  • Lee, T.-W. (1998), Independent Component Analysis. Theory and Applications, Springer, Dordrecht, DOI: 10.1007/978-1-4757-2851-4.

    Google Scholar 

  • Liner, C., C.-F. Li, A. Gersztenkorn, and J. Smythe (2004), SPICE: A new general seismic attribute. In: Proc. 72nd Annual International Meeting, Society of Exploration Geophysicists, 10–15 October 2004, Denver, USA, Conf. paper SEG-2004-0433, 433–436.

    Google Scholar 

  • Masters, T. (1993), Practical Neural Network Recipes in C++, Academic Press, San Diego.

    Google Scholar 

  • McCormack, M.D. (1990), Seismic trace editing and first break picking using neural networks. In: Proc. 60th Annual International Meeting, Society of Exploration Geophysicists, 23–27 September 1990, San Francisco, USA, Conf. paper SEG-1990-0321, 321–324.

    Google Scholar 

  • McCulloch, W.S., and W. Pitts (1943), A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys. 5,4, 115–133, DOI: 10.1007/BF02478259.

    Article  Google Scholar 

  • Meldahl, P., R. Heggland, B. Bril, and P. de Groot (2001), Identifying faults and gas chimneys using multiattributes and neural networks, The Leading Edge 20,5, 474–482, DOI: 10.1190/1.1438976.

    Article  Google Scholar 

  • Neves, F.A., M.S. Zahrani, and S.W. Bremkamp (2004), Detection of potential fractures and small faults using seismic attributes, The Leading Edge 23,9, 903–906, DOI: 10.1190/1.1803500.

    Article  Google Scholar 

  • Pickett, G.R. (1963), Acoustic character logs and their applications in formation evaluation, J. Petrol. Technol. 15,6, 659–667, DOI: 10.2118/452-PA.

    Google Scholar 

  • Poulton, M.M. (2002), Neural networks as an intelligence amplification tool: A review of applications, Geophysics 67,3, 979–993, DOI: 10.1190/1.1484539.

    Article  Google Scholar 

  • Rezaee, M.R., and J.K. Applegate (1997), Shear velocity prediction from wireline logs, an example from Carnarvon Basin, NW shelf, Australia. In: Proc. 67th Annual Meeting, Society of Exploration Geophysicists, 2–7 November 1997, Dallas, USA, Conf. paper SEG-1997-0945, 945–947.

    Google Scholar 

  • Rosenblatt, F. (1958), The perceptron: A probabilistic model for information storage and organization in the brain, Psychol. Rev. 65,6, 386–408, DOI: 10.1037/h0042519.

    Article  Google Scholar 

  • Russell, B.H., L.R. Lines, and D.P. Hampson (2003), Application of the radial basis function neural network to the prediction of log properties from seismic attributes, Explor. Geophys. 34,1/2, 15–23, DOI: 10.1071/EG03015.

    Article  Google Scholar 

  • Schmitt, D.R. (1999), Seismic attributes for monitoring of a shallow heated heavy oil reservoir: A case study, Geophysics 64,2, 368–377, DOI: 10.1190/1.1444541.

    Article  Google Scholar 

  • Sheline, H. (2005), Don’t abuse seismic attributes, AAPG Explorer 26,1, 22–23.

    Google Scholar 

  • Sheriff, R.E (2002), Encyclopedic Dictionary of Applied Geophysics, 4th ed., Geophysical References Series, Vol. 13, Society of Exploration Geophysicists, Tulsa, USA.

    Book  Google Scholar 

  • Singh, R., A. Kainthola, and T.N. Singh (2012), Estimation of elastic constant of rocks using an ANFIS approach, Appl. Soft. Comput. 12,1, 40–45, DOI: 10.1016/j.asoc.2011.09.010.

    Article  Google Scholar 

  • Taner, M.T., J.S. Schuelke, R. O’Doherty, and E. Baysal (1994), Seismic attributes revisited, SEG Technical Program, Expanded Abstracts 1994, 1104–1106, DOI: 10.1190/1.1822709.

    Google Scholar 

  • Todoeschuck, J.P., and O.G. Jensen (1988), Joseph geology and seismic deconvolution, Geophysics 53,11, 1410–1414, DOI: 10.1190/1.1442420.

    Article  Google Scholar 

  • Turcotte, D.L. (1989), Fractals in geology and geophysics, Pure Appl. Geophys. 131,1/2, 171–196, DOI: 10.1007/978-3-0348-6389-6_10.

    Article  Google Scholar 

  • Uden, R.C., M. Smith, and L. Hübert (2003), Neural network training for reservoir characterization of litho facies. In: Proc. EAGE 65th Conference & Exhibition, 2–5 June 2003, Stavanger, Norway, Z-99.

    Google Scholar 

  • Upham, W., and P. Cary (1991), Comparison of linear and nonlinear neural networks for seismic trace editing. In: Proc. 61st Annual Meeting, Society of Exploration Geophysicists, 10–14 November 1991, Houston, USA, Conf. paper SEG-1991-0293, 293–294.

    Google Scholar 

  • van der Baan, M., and C. Jutten (2000), Neural networks in geophysical applications, Geophysics 65,4, 1032–1047, DOI: 10.1190/1.1444797.

    Article  Google Scholar 

  • Walden, A.T., and J.W.J. Hosken (1985), An investigation of the spectral properties of primary reflection coefficients, Geophys. Prospect. 33,3, 400–435, DOI: 10.1111/j.1365-2478.1985.tb00443.x.

    Article  Google Scholar 

  • Walker, R., C. Wong, H. Malcotti, E. Pèrez, and J. Sierra (2005), Seismic multiattribute analysis for lithology discrimination in Ganso Field, Oficina Formation, Venezuela, The Leading Edge 24,11, 1160–1166, DOI: 10.1190/1.2135131.

    Article  Google Scholar 

  • Wantland, D. (1964), Geophysical measurements of rock properties in situ. In: W.R. Judd (ed), Proc. Int. Conf. “State of Stress in Earth’s Crust”, 13–14 June 1963, Santa Monica, USA, 409–450.

    Google Scholar 

  • Watanabe, T., H. Kasami, and S. Ohshima (2007), Compressional and shear wave velocities of serpentinized peridotites up to 200 MPa, Earth Planets Space 59,4, 233–244.

    Google Scholar 

  • Yasar, E., and Y. Erdogan (2004), Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks, Int. J. Rock Mech. Min. Sci. 41,5, 871–875, DOI: 10.1016/j.ijrmms.2004.01.012.

    Article  Google Scholar 

  • Zeng, J., Y. Shu, and Y. Zhong (1995), Fractal and chaotic characteristics of seismic data, Oil Geophys. Prospect. 30,6, 743–748 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raoof Gholami.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gholami, R., Moradzadeh, A., Rasouli, V. et al. Shear wave velocity prediction using seismic attributes and well log data. Acta Geophys. 62, 818–848 (2014). https://doi.org/10.2478/s11600-013-0200-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-013-0200-7

Keywords

  • shear wave velocity
  • seismic attributes
  • regression analysis
  • independent component analysis
  • multi-layer feed forward neural network