Skip to main content
Log in

Study of combined effects of sediment rheology and basement focusing in an unbounded viscoelastic medium using P-SV-wave finite-difference modelling

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

This paper consists of two parts. First, a fourth-order-accurate staggered-grid finite-difference (FD) program for simulation of P-SV-wave in viscoelastic medium is presented. The incorporated realistic damping is based on GMB-EK-model. The accuracy of program is validated by comparing computed phase-velocity and quality-factors with same based on GMB-EK-model and Futterman’s relations. The second part of paper presents the combined effects of sediment damping and synclinal basement focusing (SBT) on ground motion. The results reveal SBT focusing, mode conversion and diffraction of incident waves. The response of elastic SBT model reveals an increase of spectral amplification with increasing frequency. The viscoelastic response of SBT model reveals that a particular frequency may get largest amplification for a particular set of values for damping, focal-length and distance from tip of the SBT. This frequency-dependent amplification may explain mysterious damage reported in some past earthquakes if predominantly amplified frequency matches natural frequency of damaged structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alex, C.M., and K.B. Olsen (1998), Lens-effect in Santa Monica?, Geophys. Res. Lett. 25,18, 3441–3444, DOI: 10.1029/98GL52668.

    Article  Google Scholar 

  • Bard, P.Y., and J. Riepl-Thomas (2000), Wave propagation in complex geological structures and their effects on strong ground motion. In: E. Kausel and G. Manolis (eds.), Wave Motion in Earthquake Engineering, International Series on Advances in Earthquake Engineering, WIT Press, Southampton, 37–95.

    Google Scholar 

  • Booth, D.B., R.E. Wells, and R.W. Givler (2004), Chimney damage in the greater Seattle area from the Nisqually earthquake of 28 February 2001, Bull. Seismol. Soc. Am. 94,3, 1143–1158, DOI: 10.1785/0120030102.

    Article  Google Scholar 

  • Carcione, J.M., D. Kosloff, and R. Kosloff (1988), Wave propagation simulation in a linear viscoacoustic medium, Geophys. J. Int. 93,2, 393–407, DOI: 10.1111/j.1365-246X.1988.tb02010.x.

    Article  Google Scholar 

  • Clayton, R.W., and B. Engquist (1977), Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seismol. Soc. Am. 67,6, 1529–1540.

    Google Scholar 

  • Day, S.M., and J. B. Minster (1984), Numerical simulation of attenuated wavefields using a Padé approximant method, Geophys. J. Roy. Astr. Soc. 78,1, 105–118, DOI: 10.1111/j.1365-246X.1984.tb06474.x.

    Article  Google Scholar 

  • Davis, P.M., L.J. Rubinstein, K.H. Liu, S.S. Gao, and L. Knopoff (2000), Northridge earthquake damage caused by geologic focusing of seismic waves, Science 289,5485, 1746–1750, DOI: 10.1126/science. 289.5485.1746.

    Article  Google Scholar 

  • Emmerich, H., and M. Korn (1987), Incorporation of attenuation into time-domain computations of seismic wave fields, Geophysics 52,9, 1252–1264, DOI: 10.1190/1.1442386.

    Article  Google Scholar 

  • Futterman, W.I. (1962), Dispersive body waves, J. Geophys. Res. 67,13, 5279–5291, DOI: 10.1029/JZ067i013p05279.

    Article  Google Scholar 

  • Frankel, A., W. Stephenson, and D. Carver (2009), Sedimentary basin effects in Seattle, Washington: Ground-motion observations and 3D simulations, Bull. Seismol. Soc. Am. 99,3, 1579–1611, DOI: 10.1785/0120080203.

    Article  Google Scholar 

  • Frehner, M., S.M. Schmalholz, E.H. Saenger, and H. Steeb (2008), Comparison of finite difference and finite element methods for simulating two-dimensional scattering of elastic waves, Phys. Earth Planet. Int. 171,1–4, 112–121, DOI: 10.1016/j.pepi.2008.07.003.

    Article  Google Scholar 

  • Galis, M., P. Moczo, and J. Kristek (2008), A 3-D hybrid finite-difference-finite-element viscoelastic modeling of seismic wave motion, Geophys. J. Int. 175,1, 153–184, DOI: 10.1111/j.1365-246X.2008.03866.x.

    Article  Google Scholar 

  • Gao, S., H. Liu, P.M. Davis, and G.L. Knopoff (1996), Localized amplification of seismic waves and correlation with damage due to the Northridge earthquake: Ewidence of focusing in Santa Monica, Bull. Seismol. Soc. Am. 86,1B, S209–S230.

    Google Scholar 

  • Hartzell, S., E. Cranswick, A. Frankel, D. Carver, and M. Meremonte (1997), Variability of site response in the Los Angeles urban area, Bull. Seismol. Soc. Am. 87,6, 1377–1400.

    Google Scholar 

  • Ihnen, S.M., and D.M. Hadley (1986), Prediction of strong ground motion in the Puget Sound region: the 1965 Seattle earthquake, Bull. Seismol. Soc. Am. 76,4, 905–922.

    Google Scholar 

  • Israeli, M., and S.A. Orszag (1981), Approximation of radiation boundary conditions, J. Comp. Phys. 41,1, 115–135, DOI: 10.1016/0021-9991(81)90082-6.

    Article  Google Scholar 

  • Kristek, J., and P. Moczo (2003), Seismic-wave propagation in viscoelastic media with material discontinuities: A 3D fourth-order staggered-grid finite difference modeling, Bull. Seismol. Soc. Am. 93,5, 2273–2280, DOI: 10.1785/0120030023.

    Article  Google Scholar 

  • Kumar, S., and J.P., Narayan (2008), Absorbing boundary conditions in a 4th order accurate SH-wave staggered grid finite difference program with variable grid size, Acta Geophys. 56,4, 1090–1108, DOI: 10.2478/s11600-008-0043-9.

    Article  Google Scholar 

  • Levander, A.R. (1988), Fourth-order finite-difference P-SV seismograms, Geophysics 53,11, 1425–1436, DOI: 10.1190/1.1442422.

    Article  Google Scholar 

  • Madariaga, R. (1976), Dynamics of an expanding circular fault, Bull. Seismol. Soc. Am. 66,3, 639–666.

    Google Scholar 

  • Moczo, P., and P.-Y Bard (1993), Wave diffraction, amplification and differential motion near strong lateral discontinuities, Bull. Seismol. Soc. Am. 83,1, 85–106.

    Google Scholar 

  • Moczo, P., E. Bystricky, J. Kristek, J.M. Carcione, and M. Bouchon (1997), Hybrid modelling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures, Bull. Seismol. Soc. Am. 87,5, 1305–1323.

    Google Scholar 

  • Moczo, P., J. Kristek, and E. Bystricky (2000), Stability and grid dispersion of the P-SV 4th-order staggered-grid finite-difference schemes, Stud. Geophys. Geod. 44,3, 381–402, DOI: 10.1023/A:1022112620994.

    Article  Google Scholar 

  • Moczo, P., J. Kristek, V. Vavryčuk, R.J. Archuleta, and L. Halada (2002), 3D heterogeneous staggered-grid finite-difference modelling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities, Bull. Seismol. Soc. Am. 92,8, 3042–3066, DOI: 10.1785/0120010167.

    Article  Google Scholar 

  • Narayan, J.P. (2003), Simulation of ridge-weathering effects on the ground motion characteristics, J. Earthq. Eng. 7,3, 447–461, DOI: 10.1080/13632460309350458.

    Google Scholar 

  • Narayan, J.P. (2005), Study of basin-edge effects on the ground motion characteristics using 2.5-D modeling, Pure Appl. Geophys. 162,2, 273–289, DOI: 10.1007/s00024-004-2600-8.

    Article  Google Scholar 

  • Narayan, J.P. (2012), Effects of P-wave and S-wave impedance contrast on the characteristics of basin transduced Rayleigh waves, Pure Appl. Geophys. 169,4, 693–709, DOI: 10.1007/s00024-011-0338-7.

    Article  Google Scholar 

  • Narayan, J.P., and S. Kumar (2008), A fourth order accurate SH-wave staggered grid finite-difference algorithm with variable grid size and VGR-stress imaging technique, Pure Appl. Geophys. 165,2, 271–294, DOI: 10.1007/s00024-008-0298-8.

    Article  Google Scholar 

  • Narayan, J.P., and S. Kumar (2010), A 4th order accurate P-SV wave staggered grid finite difference algorithm with variable grid size and VGR-stress imaging technique, Geofizika 27,1, 45–68.

    Google Scholar 

  • Narayan, J.P., and P.V. Prasad Rao (2003), Two and half dimensional simulation of ridge effects on the ground motion characteristics, Pure Appl. Geophys. 160,8, 1557–1571, DOI: 10.1007/s00024-003-2360-x.

    Article  Google Scholar 

  • Narayan, J.P., and A. Ram (2006), Numerical modelling of the effects of an underground ridge on earthquake-induced 0.5–2.5 Hz ground motion, Geophys. J. Int. 165,1, 180–196, DOI: 10.1111/j.1365-246X.2006.02874.x.

    Article  Google Scholar 

  • Narayan, J.P., and A.A. Richharia (2008), Effects of strong lateral discontinuity on ground motion characteristics and aggravation factor, J. Seismol. 12,4, 557–573, DOI: 10.1007/s10950-008-9109-z.

    Article  Google Scholar 

  • Saenger, E.H., S.A Shapiro, and Y. Keehm (2005), Seismic effects of viscous Biotcoupling: Finite difference simulations on micro-scale, Geophys. Res. Lett. 32,14, L14310, DOI: 10.1029/2005GL023222.

    Article  Google Scholar 

  • Stephenson, W.J., A.D. Frankel, J.K. Odum, R.A. Williams, and T.L. Pratt (2006), Towards resolving an earthquake ground motion mystery in west Seattle, Washington State: Shallow seismic focusing may cause anomalous chimney damage, Geophys. Res. Lett. 33,6, L06316, DOI: 10.1029/2005GL025037.

    Article  Google Scholar 

  • Virieux, J. (1986), P-SV wave propagation in heterogeneous media; velocity-stress finte-diffeence method, Geophysics 51,4, 889–901, DOI: 10.1190/1.1442147.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay P. Narayan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayan, J.P., Kumar, V. Study of combined effects of sediment rheology and basement focusing in an unbounded viscoelastic medium using P-SV-wave finite-difference modelling. Acta Geophys. 62, 1214–1245 (2014). https://doi.org/10.2478/s11600-013-0199-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-013-0199-9

Key words

Navigation