Skip to main content
Log in

Fifty years of stacking

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Common-Mid-Point (CMP) stacking is a major process to enhance signal-to-noise ratio in seismic data. Since its appearance fifty years ago, CMP stacking has gone through different phases of prosperity and negligence within the geophysical community. During those times, CMP stacking developed from a simple process of averaging into a sophisticated process that involves complicated mathematics and state-of-the-art computation. This article summarizes the basic principles, assumptions, and violations related to the CMP stacking technique, presents a historical overview on the development stages of CMP stacking, and discusses its future potentiality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R.G., and G.A. McMechan (1990), Weighted stacking of seismic data using amplitude-decay rates and noise amplitudes, Geophys. Prospect. 38, 4, 365–380, DOI: 10.1111/j.1365-2478.1990.tb01851.x.

    Article  Google Scholar 

  • Baykulov, M., S. Dümmong, and D. Gajewski (2011), From time to depth with CRS attributes, Geophysics 76, 4, S151–S155, DOI: 10.1190/1.3580607.

    Article  Google Scholar 

  • Bednar, J., and T. Watt (1984), Alpha-trimmed means and their relationship to median filters, IEEE Trans. Acoust. Speech Signal Process. 32, 1, 145–153, DOI: 10.1109/TASSP.1984.1164279.

    Article  Google Scholar 

  • Belfer, I., A. Berkovitch, and K. Sydykov (2008), Multifocusing: A new method of multifold seismic data processing, CSEG Recorder April 2008, 30–32.

    Google Scholar 

  • Berkovitch, A., B. Gelchinsky, and S. Keydar (1994), Basic formulae for multifocusing stack. In: Proc. 56th Meeting of European Association of Exploration Geophysics, Extended Abstracts.

    Google Scholar 

  • Berkovitch, A., S. Keydar, E. Landa, and P. Trachtman (1998), Multifocusing in practice. In: Proc. 68th SEG Annual Conference and Exhibition, Expanded Abstracts, Society of Exploration Geophysicists.

    Google Scholar 

  • Berkovitch, A., I. Belfer, and E. Landa (2008), Multifocusing as a method of improving subsurface imaging, The Leading Edge 27, 2, 250–256, DOI: 10.1190/1.2840374.

    Article  Google Scholar 

  • Brown, R.J., G.H. Friesen, D.H. Hall, and O.G. Stephenson (1977), Weighted vertical stacking in crustal seismic reflection studies on the Canadian Shield, Geophys. Prospect. 25, 2, 251–268, DOI: 10.1111/j.1365-2478.1977.tb01166.x.

    Article  Google Scholar 

  • Buchanan, D.J., R. Davis, and P.J. Jackson (1983) Method of stacking seismic data, United States Patent, 4,393,484.

    Google Scholar 

  • Byun, B.S., and E.S. Nelan (1997), Method and system for correcting seismic traces for normal move-out stretch effects, United States Patent, 5,684,754.

    Google Scholar 

  • Cao, W., S.M. Hanafy, G.T. Schuster, G. Zhan, and C. Boonyasiriwat (2012), High-resolution and super stacking of time-reversal mirrors in locating seismic sources, Geophys. Prospect. 60, 1, 1–17, DOI: 10.1111/j.1365-2478.2011.00957.x.

    Article  Google Scholar 

  • Castoro, A., R.E. White, and R.D. Thomas (2001), Thin-bed AVO: Compensating for the effects of NMO on reflectivity sequences, Geophysics 66, 6, 1714–1720, DOI: 10.1190/1.1487113.

    Article  Google Scholar 

  • Claerbout, J. (1992), Earth Soundings Analysis: Processing versus Inversion, Blackwell Scientific Publs., Cambridge, 314 pp.

    Google Scholar 

  • Claerbout, J.F., and F. Muir (1973), Robust modeling with erratic data, Geophysics 38, 5, 826–844, DOI: 10.1190/1.1440378.

    Article  Google Scholar 

  • Courtier, W.H., and H.L. Mendenhall (1967), Experiences with multiple coverage seismic methods, Geophysics 32, 2, 230–258, DOI: 10.1190/1.1439864.

    Article  Google Scholar 

  • Cressman, K. (1968), How velocity layering and steep dip affect CDP, Geophysics 33, 3, 399–411, DOI: 10.1190/1.1439938.

    Article  Google Scholar 

  • Currie, W.S. (1982), Seismic velocity determination using random and nonlinear processes. In: Proc. SEG Annual Meeting, 17–21 October 1982, Dallas, USA, Conf. paper 1982-0029, Society of Exploration Geophysicists, Dallas, USA.

    Google Scholar 

  • Deregowski, S.M. (1982), Dip-moveout and reflector dispersal, Geophys. Prospect. 30, 3, 318–322, DOI: 10.1111/j.1365-2478.1982.tb01308.x.

    Article  Google Scholar 

  • Dunkin, J.W., and F.K. Levin (1973), Effect of normal moveout on a seismic pulse, Geophysics 38, 4, 635–642, DOI: 10.1190/1.1440363.

    Article  Google Scholar 

  • Embree, P. (1968), Diversity seismic record stacking method and system, United States Patent Office, 3,339,396.

    Google Scholar 

  • Fomel, S., and R. Kazinnik (2013), Non-hyperbolic common reflection surface, Geophys. Prospect. 61, 1, 21–27, DOI: 10.1111/j.1365-2478.2012.01055.x.

    Article  Google Scholar 

  • Foster, M.R., R.L. Sengbush, and R.J. Watson (1964), Design of sub-optimum filter systems for multi-trace seismic data processing, Geophys. Prospect. 12, 2, 173–191, DOI: 10.1111/j.1365-2478.1964.tb01896.x.

    Article  Google Scholar 

  • Gholami, A. (2013), Residual statics estimation by sparsity maximization, Geophysics 78, 1, V11–V19, DOI: 10.1190/geo2012-0035.1.

    Article  Google Scholar 

  • Gierse, G., J. Pruessmann, E. Laggiard, C. Boennemann, and H. Meyer (2003), Improved imaging of 3D marine seismic data from offshore Costa Rica with CRS processing, First Break 21, 12, 45–49.

    Google Scholar 

  • Green, C.H. (1938), Velocity determinations by means of reflection profiles, Geophysics 3, 4, 295–305, DOI: 10.1190/1.1439508.

    Article  Google Scholar 

  • Haldorsen, J.B.U., and P.A. Farmer (1989), Suppression of high-energy noise using alternative stacking procedure, Geophysics 54, 2, 181–190, DOI: 10.1190/1.1442642.

    Article  Google Scholar 

  • Harris, N.R. (1968), Stacking of seismic traces having common offset distances, United States Patent Office, 3,381,266.

    Google Scholar 

  • Hertweck, T., J. Mann, and T. Kluver (2005), Event-consistent smoothing in the context of the CRS stack method, J. Seism. Explor. 14, 2–3, 197–215.

    Google Scholar 

  • Hertweck, T., J. Schleicher, and J. Mann (2007), Data stacking beyond CMP, The Leading Edge 26, 7, 818–827, DOI: 10.1190/1.2756859.

    Article  Google Scholar 

  • Hileman, J.A., P. Embree, and J.C. Pflueger (1968), Automated static corrections, Geophys. Prospect. 16, 3, 326–358, DOI: 10.1111/j.1365-2478.1968.tb01980.x.

    Article  Google Scholar 

  • Hubral, P., G. Höcht, and R. Jäger (1998), An introduction to the common-reflection surface stack. In: Proc. 60th EAGE Conference and Exhibition, Extended Abstracts, 01-19, European Association of Geoscientists and Engineers.

    Google Scholar 

  • Inguva, R., and L.H. Schick (1981), Information theoretic processing of seismic data, Geophys. Res. Lett. 8, 12, 1199–1202, DOI: 10.1029/GL008i012p01199.

    Article  Google Scholar 

  • Jakubowicz, H. (1990), A simple efficient method of dip-moveout correction, Geophys. Prospect. 38, 3, 221–245, DOI: 10.1111/j.1365-2478.1990.tb01843.x.

    Article  Google Scholar 

  • Kanasewich, E.R., C.D. Hemmings, and I. Alpasian (1973), Nth-root stack nonlinear multichannel filter, Geophysics 38, 2, 327–338, DOI: 10.1190/1.1440343.

    Article  Google Scholar 

  • Katz, D., M. Landrum, and L. Schick (1985), Stacking of noisy seismic traces via maximum entropy with a correlation coefficient constraint, IEEE Trans. Acoust. Speech Signal Process. 33, 5, 1331–1333, DOI: 10.1109/TASSP.1985.1164693.

    Article  Google Scholar 

  • Kirchheimer, F. (1983), Long-period static analysis by trigonometric approximation. In: Proc. 53rd SEG Annual International Meeting of, 11–15 September 1983, Las Vegas, USA, Conf. paper 1983-0317, Society of Exploration Geophysicists.

    Google Scholar 

  • Kirk, P. (1981), Vibroseis processing. In: A.A. Fitch (ed.), Developments in Geophysical Exploration Methods, Applied Science Publishers Ltd, London, 37–52, DOI: 10.1007/978-94-009-8105-8_2.

    Chapter  Google Scholar 

  • Kostecki, A., and A. Półchłopek (2006), Method for correction of the prestack migration amplitude of converted waves, Acta Geophys. 54, 2, 113–125, DOI: 10.2478/s11600-006-0010-2.

    Article  Google Scholar 

  • Landa, E., S. Keydar, and T.J. Moser (2010), Multifocusing revisited — inhomogeneous media and curved interfaces, Geophys. Prospect. 58, 6, 925–938, DOI: 10.1111/j.1365-2478.2010.00865.x.

    Google Scholar 

  • Larner, K., and D. Hale (1992), Dip-moveout error in transversely isotropic media with linear velocity. In: Proc. 62nd SEG Annual International Meeting, Expanded Abstracts, 979-983, Society of Exploration Geophysicists.

    Google Scholar 

  • Levin, F.K. (1971), Apparent velocity from dipping interface reflections, Geophysics 36, 3, 510–516, DOI: 10.1190/1.1440188.

    Article  Google Scholar 

  • Liner, C.L. (1999), Concepts of normal and dip moveout, Geophysics 64, 5, 1637–1647, DOI: 10.1190/1.1444669.

    Article  Google Scholar 

  • Liu, G., S. Fomel, L. Jin, and X. Chen (2009), Stacking seismic data using local correlation, Geophysics 74, 3, V43–V48, DOI: 10.1190/1.3085643.

    Article  Google Scholar 

  • Loper, G.B., and R.R. Pittman (1954), Seismic recording on magnetic tape, Geophysics 19, 1, 104–115, DOI: 10.1190/1.1437953.

    Article  Google Scholar 

  • Malcolm, A.E., M.V. de Hoop, and J.H. LeRousseau (2005), The applicability of dip moveout/azimuth moveout in the presence of caustics, Geophysics 70, 1, S1–S17, DOI: 10.1190/1.1852785.

    Article  Google Scholar 

  • Mann, J., R. Jäger, T. Müller, G. Höcht, and P. Hubral (1999), Common-reflection-surface stack — a real data example, J. Appl. Geophys. 42, 3-4, 301–318, DOI: 10.1016/S0926-9851(99)00042-7.

    Article  Google Scholar 

  • Marr, J., and E. Zagst (1967), Exploration horizons from new seismic concepts of CDP and digital processing, Geophysics 32, 2, 207–224, DOI: 10.1190/1.1439862.

    Article  Google Scholar 

  • Mayne, W.H. (1956), Seismic surveying, United States Patent Office, 2,732,906.

    Google Scholar 

  • Mayne, W.H. (1962), Common reflection point horizontal data stacking techniques, Geophysics 27, 6, 927–938, DOI: 10.1190/1.1439118.

    Article  Google Scholar 

  • Mayne, W.H. (1967), Practical considerations in the use of common reflection point techniques, Geophysics 32, 2, 225–229, DOI: 10.1190/1.1439863.

    Article  Google Scholar 

  • Meyerhoff, H.J. (1966), Horizontal stacking and multichannel filtering applied to common depth point seismic data, Geophys. Prospect. 14, 4, 441–454, DOI: 10.1111/j.1365-2478.1966.tb02247.x.

    Article  Google Scholar 

  • Miller, R.D. (1992), Normal moveout stretch mute on shallow-reflection data, Geophysics 57, 11, 1502–1507, DOI: 10.1190/1.1443217.

    Article  Google Scholar 

  • Mohanty, P.R., S. Phadke, and B.B. Bhattacharya (2000), Seismic resolution over coal seams: A numerical study, Acta Geophys. Pol. 48, 2, 215–222.

    Google Scholar 

  • Muirhead, K.J. (1968), Eliminating false alarms when detecting seismic events automatically, Nature 217, 5128, 533–534, DOI: 10.1038/217533a0.

    Article  Google Scholar 

  • Müller, T. (1998), Common reflection surface stack versus NMO/stack and NMO/DMO stack. In: Proc. 60th EAGE Conference and Exhibition, Extended Abstracts, 1-20, European Association of Geoscientists and Engineers.

    Google Scholar 

  • Musgrave, A.W. (1962), Applications of the expanding reflection spread, Geophysics 27, 6, 981–993, DOI: 10.1190/1.1439126.

    Article  Google Scholar 

  • Naess, O.E. (1979), Superstack — an iterative stacking algorithm, Geophys. Prospect. 27, 1, 16–28, DOI: 10.1111/j.1365-2478.1979.tb00956.x.

    Article  Google Scholar 

  • Naess, O.E. (1982), Single-trace processing using iterative CDP-stacking, Geophys. Prospect. 30, 5, 641–652, DOI: 10.1111/j.1365-2478.1982.tb01331.x.

    Article  Google Scholar 

  • Naess, O.E., and L. Bruland (1981), Velocity analysis using iterative stacking, Geophys. Prospect. 29, 1, 1–20, DOI: 10.1111/j.1365-2478.1981.tb01007.x.

    Article  Google Scholar 

  • Naess, O.E., and L. Bruland (1985), Stacking methods other than simple summation, Dev. Geophys. Explor. Meth. 6, 189–223.

    Google Scholar 

  • Naess, O., and L. Bruland (1989), Improvement of multichannel seismic data through application of the median concept, Geophys. Prospect. 37, 3, 225–241, DOI: 10.1111/j.1365-2478.1989.tb02204.x.

    Article  Google Scholar 

  • Neelamani, R., T.A. Dickens, and M. Deffenbaugh (2006), Stack-and-denoise: A new method to stack seismic datasets. In: Proc. 76th SEG Annual International Meeting, Expanded Abstracts, 2827-2831, Society of Exploration Geophysicists.

    Google Scholar 

  • Pruett, R. (1982), Long period multiple reflection suppression and enhanced velocity discrimination using a weighted stack, Technical Program Abstracts and Biographies, Society of Exploration Geophysicists, Dallas, USA.

    Google Scholar 

  • Pugin, A., and S.E. Pullan (2000) First-arrival alignment static corrections applied to shallow seismic reflection data 1, J. Environ. Eng. Geoph. 5, 1, 7-15, DOI: 10.4133/JEEG5.1.7.

  • Pullan, S.E., and J.A. Hunter (1990), Delineation of buried bedrock valleys using the optimum offset shallow seismic reflection technique. In: S.H. Ward (ed.), Geotechnical and Environmental Geophysics. Vol. III: Geotechnical, Ch. 5, 75–88, Society of Exploration Geophysicists, DOI: 10.1190/1.9781560802785.3.ch5.

    Chapter  Google Scholar 

  • Rashed, M.A. (2003), Optimum-offset weighted stacking: a novel processing technique to enhance signal-to-noise ratio in seismic data acquired in urban areas and its application on Uemachi fault, Osaka, Japan, Ph.D. Thesis, Osaka City University, Osaka, Japan, 147 pp.

    Google Scholar 

  • Rashed, M.A. (2008), Smart stacking: A new CMP stacking technique for seismic data, The Leading Edge 27, 4, 462–467, DOI: 10.1190/1.2907176.

    Article  Google Scholar 

  • Rashed, M., E. Yamamoto, M. Mitamura, S. Toda, T. Nishida, Y. Terada, H. Uda, H. Yokota, H. Nemoto, and K. Nakagawa (2002), Weighted stack of shallow seismic reflection line acquired in downtown Osaka City, Japan, J. Appl. Geophys. 50, 3, 231–246, DOI: 10.1016/S0926-9851(02)00144-1.

    Article  Google Scholar 

  • Reynolds, J.M. (1997), An Introduction to Applied and Environmental Geophysics, John Wiley & Sons Ltd., London, 796 pp.

    Google Scholar 

  • Rietsch, E. (1980), Estimation of the signal-to-noise ratio of seismic data with an application to stacking, Geophys. Prospect. 28, 4, 531–550, DOI: 10.1111/j.1365-2478.1980.tb01241.x.

    Article  Google Scholar 

  • Robinson, J.C. (1968), Noise attenuation on common-depth-point seismic records by a semideterministic approach, Geophysics 33, 5, 723–733, DOI: 10.1190/1.1439967.

    Article  Google Scholar 

  • Robinson, J.C. (1970), Statistically optimal stacking of seismic data, Geophysics 35, 3, 436–446, DOI: 10.1190/1.1440105.

    Article  Google Scholar 

  • Rückemann, C.-P. (2012a), Supercomputing resources empowering superstack with interactive and integrated systems, AIP Conf. Proc. 1479, 873–876, DOI: 10.1063/1.4756279.

    Article  Google Scholar 

  • Rückemann, C.-P. (2012b), Comparison of stacking methods regarding processing and computing of geoscientific depth data. In: Proc. Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services (GEOProcessing 2012), 30 January — 4 February 2012, Valencia, Spain, 35–40.

    Google Scholar 

  • Ruehle, W.H. (1980), Method of enhancing seismic reflection signals for nonsurface-consistent static time shifts, United States Patent, 4,206,509.

    Google Scholar 

  • Runnestrand, S., E.L. Butler, and D.B. Neff (2002), Coherency stack of seismic traces, United States Patent, 6,393,365 B1.

    Google Scholar 

  • Rupert, G.B., and J.H. Chun (1975), The block move sum normal moveout correction, Geophysics 40, 1, 17–24, DOI: 10.1190/1.1440511.

    Article  Google Scholar 

  • Sanchis, C., and A. Hanssen (2011), Enhanced local correlation stacking method, Geophysics 76, 3, V33–V45, DOI: 10.1190/1.3552687.

    Article  Google Scholar 

  • Santos, L., J. Schleicher, J.C. Costa, and A. Novais (2011), Fast estimation of common reflection-surface parameters using local slopes, Geophysics 76, 2, U23–U34, DOI: 10.1190/1.3553001.

    Article  Google Scholar 

  • Schneider, WA., E.R. Prince, and B.F. Giles (1965), A new data-processing technique for multiple attenuation exploiting differential normal moveout, Geophysics 30, 3, 348–362, DOI: 10.1190/1.1439582.

    Article  Google Scholar 

  • Shatilo, A., and F. Aminzadeh (2000), Constant normal-moveout (CNMO) correction: A technique and test results, Geophys. Prospect. 48, 3, 473–488, DOI: 10.1046/j.1365-2478.2000.00190.x.

    Article  Google Scholar 

  • Shepard, D. (1968), A two-dimensional interpolation function for irregularly-spaced data. In: Proc. 23rd ACM National Conference, 517–524, Association for Computing Machinery, New York, DOI: 10.1145/800186.810616.

    Google Scholar 

  • Stein, J.A., T. Langston, and S.E. Larson (2009), A successful statics methodology for land data, The Leading Edge 28, 2, 222–226, DOI: 10.1190/1.3086061.

    Article  Google Scholar 

  • Stewart, R.R. (1985), Median filtering: Review and a new F/K analogue design, J. Can. Soc. Explor. Geophys. 21, 1, 54–63.

    Google Scholar 

  • Sugimoto, T., H. Saitou, and M. Okujima (2000), Study of underground imaging using shear waves: the stacking method of the reflected scattered wave, Archeol. Prospect. 7, 4, 249–261, DOI: 10.1002/1099-0763(200012)7:4<249::AID-ARP155>3.0.CO;2-#.

    Article  Google Scholar 

  • Taner, M.T., F. Koehler, and K.A. Alhilali (1974), Estimation and correction of near-surface time anomalies, Geophysics 39, 4, 441–463, DOI: 10.1190/1.1440441.

    Article  Google Scholar 

  • Trickett, S.R. (2003), Stretch-free stacking. In: Proc. 73rd SEG Annual International Meeting, Expanded Abstracts, 2008–2011, Society of Exploration Geophysicists.

    Google Scholar 

  • Trickett, S. (2007), Maximum-likelihood-estimation stacking. In: Proc. 77th SEG Annual International Meeting, Expanded Abstracts, 2640–2643, Society of Exploration Geophysicists.

    Google Scholar 

  • Tyapkin, Y., and B. Ursin (2005), Optimum stacking of seismic records with irregular noise, J. Geophys. Eng. 2, 3, 177–187, DOI: 10.1088/1742-2132/2/3/001.

    Article  Google Scholar 

  • Waltham, D.A., and J.F. Boyce (1986), Signal-to-noise ratio enhancement in seismic multifold data using Bayesian statistics, Geophys. Prospect. 34, 1, 56–72, DOI: 10.1111/j.1365-2478.1986.tb00452.x.

    Article  Google Scholar 

  • Watt, T., and J.B. Bednar (1983), Role of the alpha-trimmed mean in combining and analyzing seismic common-depth-point gathers, Technical Program Abstracts and Biographies, S3.5, Society of Exploration Geophysicists, Las Vegas, USA.

    Google Scholar 

  • White, R.E. (1977), The performance of optimum stacking filters in suppressing uncorrelated noise, Geophys. Prospect. 25, 1, 165–178, DOI: 10.1111/j.1365-2478.1977.tb01159.x.

    Article  Google Scholar 

  • Wolf, K., D. Rosales, A. Guitton, and J. Claerbout (2004), Robust moveout without velocity picking, Stanford Explor. Project 115, 273–282.

    Google Scholar 

  • Woodward, M.J. (1985), Statistical averages for velocity analysis and stack: median vs. mean, Stanford Explor. Project 42, 97–111.

    Google Scholar 

  • Yilmaz, Ö. (2001), Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data, 2nd ed., Society of Exploration Geophysicists Books, Tulsa, 2027 pp.

    Book  Google Scholar 

  • Yoon, M.-K., M. Baykulov, S. Dümmong, H.-J. Brink., and D. Gajewski (2009), Reprocessing of deep seismic reflection data from the North German Basin with the Common Reflection Surface stack, Tectonophysics 472, 1–4, 273–283, DOI: 10.1016/j.tecto.2008.05.010.

    Article  Google Scholar 

  • Zagst, E.F. (1965), Horizontal stacking improves seismic data, The Oil Gas J. 63, 33, 97–104.

    Google Scholar 

  • Zhang, S.Z., Y.X. Xu, and H.H. Xia (2004), Correlative weighted stacking for seismic data in the wavelet domain. In: Proc. International Conference on Environmental and Engineering Geophysics (ICEEG), 6–9 June 2004, Wuhan, China, 161–165.

    Google Scholar 

  • Zhang, Y., S. Bergler, and P. Hubral (2001), Common-reflection-surface (CRS) stack for common offset, Geophys. Prospect. 49, 6, 709–718, DOI: 10.1046/j.1365-2478.2001.00292.x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Rashed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rashed, M. Fifty years of stacking. Acta Geophys. 62, 505–528 (2014). https://doi.org/10.2478/s11600-013-0191-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-013-0191-4

Key words

Navigation