Wavelet-based multifractal analysis of earthquakes temporal distribution in Mammoth Mountain volcano, Mono County, Eastern California

Abstract

This paper presents a wavelet-based multifractal approach to characterize the statistical properties of temporal distribution of the 1982–2012 seismic activity in Mammoth Mountain volcano. The fractal analysis of time-occurrence series of seismicity has been carried out in relation to seismic swarm in association with magmatic intrusion happening beneath the volcano on 4 May 1989. We used the wavelet transform modulus maxima based multifractal formalism to get the multifractal characteristics of seismicity before, during, and after the unrest. The results revealed that the earthquake sequences across the study area show time-scaling features. It is clearly perceived that the multifractal characteristics are not constant in different periods and there are differences among the seismicity sequences. The attributes of singularity spectrum have been utilized to determine the complexity of seismicity for each period. Findings show that the temporal distribution of earthquakes for swarm period was simpler with respect to pre- and post-swarm periods.

This is a preview of subscription content, access via your institution.

References

  1. Arneodo, A., E. Bacry, and J.F. Muzy (1995), The thermodynamics of fractals revisited with wavelets, Physica A 213,1–2, 232–275, DOI: 10.1016/0378-4371(94)00163-N.

    Article  Google Scholar 

  2. Arneodo, A., Y. d’Aubenton-Carafa, E. Bacry, P.V. Graves, J.F. Muzy, and C. Thermes (1996), Wavelet based fractal analysis of DNA sequences, Physica D 96,1–4, 291–320, DOI: 10.1016/0167-2789(96)00029-2.

    Article  Google Scholar 

  3. Arneodo, A., B. Audit, E. Bacry, S. Manneville, J.F. Muzy, and S.G. Roux (1998), Thermodynamics of fractal signals based on wavelet analysis: application to fully developed turbulence data and DNA sequences, Physica A 254,1–2, 24–45, DOI: 10.1016/S0378-4371(98)00002-8.

    Article  Google Scholar 

  4. Arneodo, A., B. Audit, and P. Kestener (2007), Multi-fractal formalism based on the Continuous Wavelet transform, Scholarpedia 3,1–20, DOI: 10.4249/scholarpedia.4103.

    Google Scholar 

  5. Bacry, E., J.F. Muzy, and A. Arneodo (1993), Singularity spectrum of fractal signals from wavelet analysis: exact results, J. Stat. Phys. 70,3–4, 635–674, DOI: 10.1007/BF01053588.

    Article  Google Scholar 

  6. Caruso, F., S. Vinciguerra, V. Latora, A. Rapisarda, and S. Malone (2006), Multifractal analysis of Mount St. Helens seismicity as a tool for identifying eruptive activity, Fractals 14,3, 179–186, DOI: 10.1142/S0218348X06003180.

    Article  Google Scholar 

  7. Castle, R.O., J.E. Estrem, and J.C. Savage (1984), Uplift across Long Valley Caldera, California, J. Geophys. Res. 89,B13, 11507–11516, DOI: 10.1029/JB089iB13p11507.

    Article  Google Scholar 

  8. Christiansen, L.B., S. Hurwitz, M.O. Saar, S.E. Ingebritsen, and P.A. Hsieh (2005), Seasonal seismicity at western United States volcanic centers, Earth Planet. Sci. Lett. 240,2, 307–321, DOI: 10.1016/j.epsl.2005.09.012.

    Article  Google Scholar 

  9. Crovelli, R.A., and C.C. Barton (1995), Fractals and the Pareto distribution applied to petroleum accumulation-size distributions. In: C.C. Barton and P.R. La Pointe (eds.), Fractals in Petroleum Geology and Earth Processes, Plenum Press, New York, 59–72, DOI: 10.1007/978-1-4615-1815-0_4.

    Google Scholar 

  10. Currenti, G., C. Del Negro, and G. Nunnari (2005), Inverse modelling of volcanomagnetic fields using a genetic algorithm technique, Geophys. J. Int. 163,1, 403–418, DOI: 10.1111/j.1365-246x.2005.02730.x.

    Article  Google Scholar 

  11. de Souza, J., and S.P. Rostirolla (2011), A fast MATLAB program to estimate the multifractal spectrum of multidimensional data: Application to fractures, Comput. Geosci. 37,2, 241–249, DOI: 10.1016/j.cageo.2010.09.001.

    Article  Google Scholar 

  12. Enescu, B., K. Ito, and Z.R. Struzik (2006), Wavelet-based multiscale resolution analysis of real and simulated time-series of earthquakes, Geophys. J. Int. 164,1, 63–74, DOI: 10.1111/j.1365-246X.2005.02810.x.

    Article  Google Scholar 

  13. Eneva, M. (1994), Monofractal or multifractal: a case study of spatial distribution of mining-induced seismic activity, Nonlin. Processes Geophys. 1,2/3, 182–190, DOI: 10.5194/npg-1-182-1994.

    Article  Google Scholar 

  14. Falconer, K. (2003), Fractal Geometry. Mathematical Foundations and Applications, 2nd ed., John Wiley & Sons Ltd, Chichester.

    Book  Google Scholar 

  15. Farge, M. (1992), Wavelet transforms and their applications to turbulence, Ann. Rev. Fluid Mech. 24, 359–457, DOI: 10.1146/annurev.fl.24.010192.002143.

    Article  Google Scholar 

  16. Farrar, C.D., M.L. Sorey, W.C. Evans, J.F. Howle, B.D. Kerr, B.M. Kennedy, C.Y. King, and J.R. Southon (1995), Forest-killing diffuse CO2 emission at Mammoth Mountain as a sign of magmatic unrest, Nature 376,6542, 675–678, DOI: 10.1038/376675a0.

    Article  Google Scholar 

  17. Foulger, G.R., B.R. Julian, D.P. Hill, A.M. Pitt, P.E. Malin, and E. Shalev (2004), Non-double-couple microearthquakes at Long Valley caldera, California, provide evidence for hydraulic fracturing, J. Volcanol. Geoth. Res. 132,1, 45–71, DOI: 10.1016/S0377-0273(03)00420-7.

    Article  Google Scholar 

  18. Geilikman, M.B., T.V. Golubeva, and V.F. Pisarenko (1990), Multifractal patterns of seismicity, Earth Planet. Sci. Lett. 99,1–2, 127–132, DOI: 10.1016/0012-821X(90)90076-A.

    Article  Google Scholar 

  19. Goltz, C. (1997), Fractal and Chaotic Properties of Earthquakes, Lecture Notes in Earth Sciences, Vol. 77, Springer, Berlin Heidelberg, DOI: 10.1007/BFb0028316.

    Book  Google Scholar 

  20. Goupillaud, P., A. Grossmann, and J. Morlet (1984), Cycle-octave and related transforms in seismic signal analysis, Geoexploration 23,1, 85–102, DOI: 10.1016/0016-7142(84)90025-5.

    Article  Google Scholar 

  21. Grossmann, A., and J. Morlet (1984), Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal. 15,4, 723–736, DOI: 10.1137/0515056.

    Article  Google Scholar 

  22. Hein, F.J. (1999), Mixed (“multi”) fractal analysis of Granite Wash fields/pools and structural lineaments, Peace River Arch area, northwestern Alberta, Canada; A potential approach for use in hydrocarbon exploration, Bull. Can. Petrol. Geol. 47,4, 556–572.

    Google Scholar 

  23. Hill, D.P., R.A. Bailey, and A.S. Ryall (1985), Active tectonic and magmatic processes beneath Long Valley Caldera, eastern California: An overview, J. Geophys. Res. 90,B13, 11111–11120, DOI: 10.1029/JB090iB13p11111.

    Article  Google Scholar 

  24. Hill, D.P., W.L. Ellsworth, M.J.S. Johnston, J.O. Langbein, D.H. Oppenheimer, A.M. Pitt, P.A. Reasenberg, M.L. Sorey, and S.R. McNutt (1990), The 1989 earthquake swarm beneath Mammoth Mountain, California: An initial look at the 4 May through 30 September activity, Bull. Seismol. Soc. Am. 80,2, 325–339.

    Google Scholar 

  25. Hirabayashi, T., K. Ito, and T. Yoshii (1992), Multifractal analysis of earthquakes, Pure Appl. Geophys. 138,4, 591–610, DOI: 10.1007/BF00876340.

    Article  Google Scholar 

  26. Jaffard, S. (1989), Hölder exponents at given points and wavelet coefficients, C. R. Acad. Sci. Paris Ser. I 308,4, 79–81.

    Google Scholar 

  27. Jaffard, S. (1991), Pointwise smoothness, two-microlocalization and wavelet coefficients, Publ. Mat. 35,1, 155–168, DOI: 10.5565/PUBLMAT_35191_06.

    Article  Google Scholar 

  28. Jaffard, S. (1997a), Multifractal formalism for functions. Part I: Results valid for all functions, SIAM J. Math. Anal. 28,4, 944–970, DOI: 10.1137/S0036141095282991.

    Article  Google Scholar 

  29. Jaffard, S. (1997b), Multifractal formalism for functions. Part II: Self-similar functions, SIAM J. Math. Anal. 28,4, 971–998, DOI: 10.1137/S0036141095283005.

    Article  Google Scholar 

  30. Kagan, Y.Y., and D.D. Jackson (1991), Long-term earthquake clustering, Geophys. J. Int. 104,1, 117–133, DOI: 10.1111/j.1365-246X.1991.tb02498.x.

    Article  Google Scholar 

  31. Kagan, Y., and L. Knopoff (1980), Spatial distribution of earthquakes: the two-point correlation function, Geophys. J. Roy. Astron. Soc. 62,2, 303–320, DOI: 10.1111/j.1365-246X.1980.tb04857.x.

    Article  Google Scholar 

  32. Kulkarni, O.C., R. Vigneshwar, V.K. Jayaraman, and B.D. Kulkarni (2005), Identification of coding and non-coding sequences using local Hölder exponent formalism, Bioinformatics 21,20, 3818–3823, DOI: 10.1093/bioinformatics/bti639.

    Article  Google Scholar 

  33. Langbein, J., D. Dzurisin, G. Marshall, R. Stein, and J. Rundle (1995), Shallow and peripheral volcanic sources of inflation revealed by modeling two-color geodimeter and levelling data from Long Valley Caldera, California, 1988–1992, J. Geophys. Res. 100,B7, 12487–12495, DOI: 10.1029/95JB01052.

    Article  Google Scholar 

  34. Mallat, S., and W.L. Hwang (1992), Singularity detection and processing with wavelets, IEEE Trans. Inf. Theory 38,2, 617–643, DOI: 10.1109/18.119727.

    Article  Google Scholar 

  35. Mallat, S., and S. Zhong (1992), Characterization of signals from multiscale edges, IEEE Trans. Pattern Anal. Mach. Intellig. 14,7, 710–732, 10.1109/34.142909.

    Article  Google Scholar 

  36. Mandelbrot, B.B. (1989), Multifractal measures, especially for the geophysicist, Pure Appl. Geophys. 131,1/2, 5–42, DOI: 10.1007/BF00874478.

    Article  Google Scholar 

  37. Maruyama, F., K. Kai, and H. Morimoto (2011), Wavelet-based multifractal analysis of the El Niño/Southern Oscillation, the Indian Ocean dipole and the North Atlantic Oscillation, SOLA 7, 65–68, DOI: 10.2151/sola.2011-017.

    Article  Google Scholar 

  38. McAteer, R.T.J., C.A. Young, J. Ireland, and P.T. Gallagher (2007), The bursty nature of solar flare X-ray emission, Astrophys. J. 662,1, 691–700, DOI: 10.1086/518086.

    Article  Google Scholar 

  39. McKee, E.H. (1971), Tertiary igneous chronology of the Great Basin of western United States-Implications for tectonic models, Geol. Soc. Am. Bull. 82,12, 3497–3502, DOI: 10.1130/0016-7606(1971)82[3497:TICOTG]2.0.CO;2.

    Article  Google Scholar 

  40. McNutt, S.R. (2002), Volcano seismology and monitoring for eruptions. In: W.H.K. Lee, H. Kanamori, P.C. Jennings, and C. Kisslinger (eds.), International Handbook of Earthquake and Engineering Seismology, Vol. 81, Part A, Academic Press, Massachusetts, 383–406, DOI: 10.1016/S0074-6142(02) 80228-5.

    Google Scholar 

  41. Muzy, J.F., E. Bacry, and A. Arneodo (1991), Wavelets and multifractal formalism for singular signals: Application to turbulence data, Phys. Rev. Lett. 67,25, 3515–3518, DOI: 10.1103/PhysRevLett.67.3515.

    Article  Google Scholar 

  42. Muzy, J.F., E. Bacry, and A. Arneodo (1993), Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method, Phys. Rev. E 47,2, 875–884, DOI: 10.1103/Phys RevE.47.875.

    Article  Google Scholar 

  43. Muzy, J.F., E. Bacry, and A. Arneodo (1994), The multifractal formalism revisited with wavelets, Int. J. Bifurcation Chaos 4,2, 245, DOI: 10.1142/S0218127494000204.

    Article  Google Scholar 

  44. Özger, M. (2011), Investigating the multifractal properties of significant wave height time series using a wavelet-based approach, J. Waterw. Port Coastal Ocean Eng. 137,1, 34–42, DOI: 10.1061/(ASCE)WW.1943-5460.0000062.

    Article  Google Scholar 

  45. Pastén, D., V. Muñoz, A. Cisternas, J. Rogan, and J.A. Valdivia (2011), Monofractal and multifractal analysis of the spatial distribution of earthquakes in the central zone of Chile, Phys. Rev. E 84,6, 66123-1–66123-11, DOI: 10.1103/PhysRevE.84.066123.

    Article  Google Scholar 

  46. Pitt, A.M., and D.P. Hill (1994), Long-period earthquakes in the Long Valley Caldera region, eastern California, Geophys. Res. Lett. 21,16, 1679–1682, DOI: 10.1029/94GL01371.

    Article  Google Scholar 

  47. Prejean, S., A. Stork, W. Ellsworth, D. Hill, and B. Julian (2003), High precision earthquake locations reveal seismogenic structure beneath Mammoth Mountain, California, Geophys. Res. Lett. 30,24, 2247, DOI: 10.1029/2003GL018334.

    Article  Google Scholar 

  48. Roux, S., J.F. Muzy, and A. Arneodo (1999), Detecting vorticity filaments using wavelet analysis: About the statistical contribution of vorticity filaments to intermittency in swirling turbulent flows, Eur. Phys. J. B 8,2, 301–322, DOI: 10.1007/s100510050694.

    Article  Google Scholar 

  49. Sadovskiy, M.A., T.V. Golubeva, V.F. Pisarenko, and M.G. Shnirman (1984), Characteristic dimensions of rock and hierarchical properties of seismicity, Izv. — Phys. Solid Earth 20, 87–95.

    Google Scholar 

  50. Smalley Jr., R.F., J.-L. Chatelain, D.L. Turcotte, and R. Prévot (1987), A fractal approach to the clustering of earthquakes: Applications to the seismicity of the New Hebrides, Bull. Seismol. Soc. Am. 77,4, 1368–1381.

    Google Scholar 

  51. Sorey, M.L., W.C. Evans, B.M. Kennedy, J. Rogie, and A. Cook (1999), Magmatic gas emissions from Mammoth Mountain, Mono County, California, Calif. Geol. 52,5, 4–16.

    Google Scholar 

  52. Stanley, H.E., L.A.N. Amaral, A.L. Goldberger, S. Havlin, P.C. Ivanov, and C.-K. Peng (1999), Statistical physics and physiology: Monofractal and multifractal approaches, Physica A 270,1–2, 309–324, DOI: 10.1016/S0378-4371(99)00230-7.

    Article  Google Scholar 

  53. Telesca, L., V. Lapenna, and M. Macchiato (2004), Mono- and multi-fractal investigation of scaling properties in temporal patterns of seismic sequences, Chaos Soliton Fract. 19,1, 1–15, DOI: 10.1016/S0960-0779(03)00188-7.

    Article  Google Scholar 

  54. Toledo, B.A., A.C.L. Chian, E.L. Rempel, R.A. Miranda, P.R. Muñoz, and J.A. Valdivia (2013), Wavelet-based multifractal analysis of nonlinear time series: The earthquake-driven tsunami of 27 February 2010 in Chile, Phys. Rev. E 87,2, 22821-1–22821-11, DOI: 10.1103/PhysRevE.87.022821.

    Article  Google Scholar 

  55. Turcotte, D.L. (1992), Fractals and Chaos in Geology and Geophysics, Cambridge University Press, Cambridge.

    Google Scholar 

  56. Venugopal, V., S.G. Roux, E. Foufoula-Georgiou, and A. Arneodo (2006), Revisiting multifractality of high-resolution temporal rainfall using a waveletbased formalism, Water Resour. Res. 42,6, W06D14, DOI: 10.1029/2005WR004489.

    Google Scholar 

  57. Vicsek, T. (1992), Fractal Growth Phenomena, 2nd ed., World Scientific Publ., Singapore.

    Book  Google Scholar 

  58. Wiemer, S. (2001), A software package to analyze seismicity: ZMAP, Seismol. Res. Lett. 72,3, 373–382, DOI: 10.1785/gssrl.72.3.373.

    Article  Google Scholar 

  59. Wiemer, S., S.R. McNutt, and M. Wyss (1998), Temporal and three-dimensional spatial analysis of the frequency-magnitude distribution near Long Valley Caldera, California, Geophys. J. Int. 134,2, 409–421, DOI: 10.1046/j.1365-246x.1998.00561.x.

    Article  Google Scholar 

  60. Zamani, A., and M. Agh-Atabai (2009), Temporal characteristics of seismicity in the Alborz and Zagros regions of Iran, using multifractal approach, J. Geodyn. 47,5, 271–279, DOI: 10.1016/j.jog.2009.01.003.

    Article  Google Scholar 

  61. Zamani, A., and M. Agh-Atabai (2011), Multifractal analysis of the spatial distribution of earthquake epicentres in the Zagross and Alborz-Kopeh Dagh regions of Iran, Iran. J. Sci. Technol. A1, 39–51.

    Google Scholar 

  62. Zamani, A., J. Samiee, and J.F. Kirby (2013), Estimating the mechanical anisotropy of the Iranian lithosphere using the wavelet coherence method, Tectonophysics 601, 139–147, DOI: 10.1016/j.tecto.2013.05.005.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amir Pirouz Kolahi Azar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zamani, A., Kolahi Azar, A.P. & Safavi, A.A. Wavelet-based multifractal analysis of earthquakes temporal distribution in Mammoth Mountain volcano, Mono County, Eastern California. Acta Geophys. 62, 585–607 (2014). https://doi.org/10.2478/s11600-013-0184-3

Download citation

Key words

  • seismic hazards
  • natural disasters
  • earthquake swarm
  • volcano-tectonic seismicity
  • wavelet transform