Skip to main content

Lidar observations of volcanic dust over Polish Polar Station at Hornsund after eruptions of Eyjafjallajökull and Grímsvötn

Abstract

Two significant volcanic eruptions, i.e., Eyjafjallajökull (April–May 2010) and Grímsvötn (May 2011) took place recently in Iceland. Within a few days after eruptions, layers of high aerosol concentration have been observed by multiwavelength lidar of the Polish Polar Station at Hornsund, Svalbard. Measurements of the aerosol’s optical properties indicated a possible presence of volcanic ash transported over the Station. The latter presumption was confirmed by the computed backward trajectories of air masses, showing their paths passing over the location of volcanoes.

This is a preview of subscription content, access via your institution.

Refereces

  1. Ångström, A. (1964), The parameters of atmospheric turbidity, Tellus 16,1, 64–75, DOI: 10.1111/j.2153-3490.1964.tb00144.x.

    Article  Google Scholar 

  2. Bazhenov, O.E., V.D. Burlakov, S.I. Dolgii, and A.V. Nevzorov (2012), Lidar observations of aerosol disturbances of the stratosphere over Tomsk (56.5°N; 85.0°E) in volcanic activity period 2006–2011, Int. J. Optics 2012, 1–10, DOI: 10.1155/2012/786295.

    Article  Google Scholar 

  3. Bloch, M., and G. Karasiński (2014), Water vapour mixing ratio profiles over Hornsund, Arctic. Intercomparison of lidar and AIRS results, Acta Geophys. 62,2, 290–301, DOI: 10.2478/s11600-013-0168-3 (this issue).

    Article  Google Scholar 

  4. Bodhaine, B.A., N.B. Wood, E.G. Dutton, and J.R. Slusser (1999), On Rayleigh optical depth calculations, J. Atmos. Oceanic Technol. 16,11, 1854–1861, DOI: 10.1175/1520-0426(1999)016〈1854:ORODC〉2.0.CO;2.

    Article  Google Scholar 

  5. Campanelli, M., V. Estelles, T. Smyth, C. Tomasi, M.P. Martìnez-Lozano, B. Claxton, P. Muller, G. Pappalardo, A. Pietruczuk, J. Shanklin, S. Colwell, C. Wrench, A. Lupi, M. Mazzola, C. Lanconelli, V. Vitale, F. Congeduti, D. Dionisi, F. Cardillo, M. Cacciani, G. Casasanta, and T. Nakajima (2011), Monitoring of Eyjafjallajökull volcanic aerosol by the new European Skynet Radiometers (ESR) network, Atmos. Environ. 48, 33–45, DOI: 10.1016/j.atmosenv.2011.09.070.

    Article  Google Scholar 

  6. Draxler, R.R., and G.D. Rolph (2012), HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY website NOAA Air Resources Laboratory, Silver Spring, USA, http://ready.arl.noaa.gov/HYSPLIT.php.

    Google Scholar 

  7. Eck, T.F., B.N. Holben, A. Sinyuk, R.T. Pinker, P. Goloub, H. Chen, B. Chatenet, Z. Li, R.P. Singh, S.N. Tripathi, J.S. Reid, D.M. Giles, O. Dubovik, N.T. O’Neill, A. Smirnov, P. Wang, and X. Xia (2010), Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures, J. Geophys. Res. 115,D19, D19205, DOI: 10.1029/2010JD014002.

    Article  Google Scholar 

  8. Ernst, K., S. Chudzyński, G. Karasiński, A. Pietruczuk, and T. Stacewicz (2003), Multiwavelength lidar for determination of the atmospheric aerosol size distribution, Proc. SPIE 5229, 45–50, DOI: 10.1117/12.520590.

    Article  Google Scholar 

  9. Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schultz, and R. Van Dorland (2007), Changes in atmospheric constituents and in radiative forcing. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.), Cli mate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 129–234, Cambridge University Press, Cambridge.

    Google Scholar 

  10. Hoffmann, A., C. Ritter, M. Stock, M. Shiobara, A. Lampert, M. Maturilli, T. Orgis, R. Neuber, and A. Herber (2009), Ground-based lidar measurements from Ny-Ålesund during ASTAR 2007, Atmos. Chem. Phys. 9,22, 9059–9081, DOI: 10.5194/acp-9-9059-2009.

    Article  Google Scholar 

  11. Holben, B.N., T.F. Eck, I. Slutsker, D. Tanré, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y.J. Kaufman, T. Nakajima, F. Lavenu, I. Jankoviak, and A. Smirnov (1998), AERONET — A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ. 66,1, l–16, DOI: 10.1016/S0034-4257(98)00031-5.

    Article  Google Scholar 

  12. Hornsund GLACIO-TOPOCLIM (2013), Hornsund GLACIO-TOPOCLIM database 2010, http://www.glacio-topoclim.org.

    Google Scholar 

  13. Jakobsdóttir, S.S., G. Sigurðsson, Ó.ℋ. Árnason, and M. Tumi (2011), Grímsvötn volcano, Status Report: 22 May 2011.

    Google Scholar 

  14. Karasiński, G., A.E. Kardaś, K. Markowicz, S.P. Malinowski, T. Stacewicz, K. Stelmaszczyk, S. Chudzyński, W. Skubiszak, M. Posyniak, A.K. Jagodnicka, C. Hochhertz, and L. Woeste (2007), LIDAR investigation of properties of atmospheric aerosol, Eur. Phys. J. Spec. Top. 144, 129–138, DOI: 10.1140/ epjst/e2007-00117-8.

    Article  Google Scholar 

  15. Kardaś, A.E., K.M. Markowicz., K. Stelmaszczyk, G. Karasiński, S.P. Malinowski, T. Stacewicz, L. Woeste, and C. Hochhertz (2010), Saharan aerosol sensed over Warsaw by backscatter depolarization lidar, Opt. Appl. 40,1, 219–237.

    Google Scholar 

  16. Karlsdóttir, S., Á.G. Gylfason, Á. Höskuldsson, B. Brandsdóttir, E. Ilyinskaya, M.T. Gudmundsson, ℋ. Högnadóttir, Editor: Barði ℋorkelsson (2012), The 2010 Eyjafjallajökull eruption, Iceland, Report to ICAO — June 2012.

  17. Kerminen, V.M., J.V. Niemi, H. Timonen, M. Aurela, A. Frey, S. Carbone, S. Saarikoski, K. Teinilä, J. Hakkarainen, J. Tamminen, J. Vira, M. Prank, M. Sofiev, and R. Hillamo (2011), Characterization of a volcanic ash episode in southern Finland caused by the Grimsvötn eruption in Iceland in May 2011, Atmos. Chem. Phys. 11,23, 12227–12239, DOI: 10.5194/acp-11-12227-2011.

    Article  Google Scholar 

  18. Klett, J.D. (1981), Stable analytical inversion solution for processing lidar returns, Appl. Opt. 20,2, 211–220, DOI: 10.1364/AO.20.000211.

    Article  Google Scholar 

  19. Lampert, A., J. Ström, C. Ritter, R. Neuber, Y.J. Yoon, N.Y. Chae, and M. Shiobara (2012), Inclined lidar observations of boundary layer aerosol particles above the Kongsfjord, Svalbard, Acta Geophys. 60,5, 1287–1307, DOI: 10.2478/s11600-011-0067-4.

    Article  Google Scholar 

  20. Learmount, D. (2011), European procedures cope with new ash cloud. Flight global, http://www.flightglobal.com/news/articles/european-proceedures-copewith-new-ash-cloud-357246.

    Google Scholar 

  21. Marenco, F., B. Johnson, K. Turnbull, S. Newman, J. Haywood, H. Webster, and H. Ricketts (2011), Airborne lidar observations of the 2010 Eyjafjallajökull volcanic ash plume, J. Geophys. Res. 116,D21, D00U05, DOI: 10.1029/2011JD016396.

    Google Scholar 

  22. Markowicz, K.M., T. Zieliński, A. Pietruczuk, M. Posyniak, O. Zawadzka, P. Makuch, I.S. Stachlewska, A.K. Jagodnicka, T. Petelski, W. Kumala, P. Sobolewski, and T. Stacewicz (2012), Remote sensing measurements of the volcanic ash plume over Poland in April 2010, Atmos. Environ. 48, 66–75, DOI: 10.1016/j.atmosenv.2011.07.015.

    Article  Google Scholar 

  23. McCormick, M.P., L.W. Thomason, and C.R. Trepte (1995), Atmospheric effects of the Mt Pinatubo eruption, Nature 373,6513, 399–404, DOI: 10.1038/373399a0.

    Article  Google Scholar 

  24. Menon, S., A.D. Del Genio, D. Koch, and G. Tselioudis (2002), GCM simulations of the aerosol indirect effect: Sensitivity to cloud parameterization and aerosol burden, J. Atmos. Sci. 59,3, 692–713, DOI: 10.1175/1520-0469 (2002)059〈0692:GSOTAI〉2.0.CO;2.

    Article  Google Scholar 

  25. Nemuc, A., I.S. Stachlewska, J. Vasilescu, A. Górska, D. Nicolae, and C. Talianu (2014), Optical properties of long-range transported volcanic ash over Romania and Poland during Eyjafjallajökull eruption in 2010, Acta Geophys. 62,2, 350–366, DOI: 10.2478/s11600-013-0180-7 (this issue).

    Article  Google Scholar 

  26. Papayannis, A., R.E. Mamouri, V. Amiridis, E. Giannakaki, I. Veselovskii, P. Kokkalis, G. Tsaknakis, D. Balis, N.I. Kristiansen, A. Stohl, M. Korenskiy, K. Allakhverdiev, M.F. Huseyinoglu, and T. Baykara (2012), Optical properties and vertical extension of aged ash layers over the Eastern Mediterranean as observed by Raman lidars during the Eyjafjallajökull eruption in May 2010, Atmos. Environ. 48, 56–65, DOI: 10.1016/j.atmosenv.2011. 08.037.

    Article  Google Scholar 

  27. Pietruczuk, A., and G. Karasiński (2010), Lidar at Polish Polar Station, instrument design and first results. In: Proc. 25th International Laser Radar Conference, 5–9 July 2010, St. Petersburg, Russia, 163–165.

    Google Scholar 

  28. Pietruczuk, A., J.W. Krzyścin, J. Jarosławski, J. Podgórski, P. Sobolewski, and J. Wink (2010), Eyjafjallajökull volcano ash observed over Belsk (52°N, 21°E), Poland, in April 2010, Int. J. Remote Sens. 31,15, 3981–3986, DOI: 10.1080/01431161.2010.498030.

    Article  Google Scholar 

  29. Rozwadowska, A., T. Zieliński, T. Petelski, and P. Sobolewski (2010), Cluster analysis of the impact of air back-trajectories on aerosol optical properties at Hornsund, Spitsbergen, Atmos. Chem. Phys. 10,3, 877–893, DOI: 10.5194/acp-10-877-2010.

    Article  Google Scholar 

  30. Seinfeld, J.H., and S.N. Pandis (1998), Atmospheric Chemistry and Physics. From Air Pollution to Climate, John Wiley & Sons, New York.

    Google Scholar 

  31. Stachlewska, I.S., and C. Ritter (2010), On retrieval of lidar extinction profiles using Two-Stream and Raman techniques, Atmos. Chem. Phys. 10,6, 2813–2824, DOI: 10.5194/acp-10-2813-2010.

    Article  Google Scholar 

  32. Stachlewska, I.S., R. Neuber, A. Lampert, C. Ritter, and G. Wehrle (2010), AMALi — the Airborne Mobile Aerosol Lidar for Arctic research, Atmos. Chem. Phys. 10,6, 2947–2963, DOI: 10.5194/acp-10-2947-2010.

    Article  Google Scholar 

  33. Tesche, M., P. Glantz, C. Johansson, M.G. Norman, A. Hiebsch, P. Seifert, A. Ansmann, R. Engelmann, and D. Althausen (2012), Volcanic ash over Scandinavia originating from the Grímsvötn eruptions in May 2011, J. Geophys. Res. 117,D9, D09201, DOI: 10.1029/2011JD017090.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Karasiński.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Karasiński, G., Posyniak, M., Bloch, M. et al. Lidar observations of volcanic dust over Polish Polar Station at Hornsund after eruptions of Eyjafjallajökull and Grímsvötn. Acta Geophys. 62, 316–339 (2014). https://doi.org/10.2478/s11600-013-0183-4

Download citation

Key words

  • lidar
  • remote sensing
  • atmospheric aerosol
  • air mass trajectories
  • Arctic