Skip to main content

Studies of aerosol optical depth with the use of Microtops II sun photometers and MODIS detectors in coastal areas of the Baltic Sea

Abstract

In this paper we describe the results of a research campaign dedicated to the studies of aerosol optical properties in different regions of both the open Baltic Sea and its coastal areas. During the campaign we carried out simultaneous measurements of aerosol optical depth at 4 stations with the use of the hand-held Microtops II sun photometers. The studies were complemented with aerosol data provided by the MODIS. In order to obtain the full picture of aerosol situation over the study area, we added to our analyses the air mass back-trajectories at various altitudes as well as wind fields. Such complex information facilitated proper conclusions regarding aerosol optical depth and Ångström exponent for the four locations and discussion of the changes of aerosol properties with distance and with changes of meteorological factors. We also show that the Microtops II sun photometers are reliable instruments for field campaigns. They are easy to operate and provide good quality results.

This is a preview of subscription content, access via your institution.

References

  1. Badarinath, K.V.S., S.K. Kharol, D.G. Kaskoutis, A.R. Sharma, V. Ramswamy, and H.D Kambezidis (2010), Long-range transport of dust aerosols over the Arabian Sea and Indian region — A case study using satellite data and ground-based measurements, Global Planet. Change 72,3, 164–181, DOI: 10.1016/j.gloplacha.2010.02.003.

    Article  Google Scholar 

  2. Blanchard, D.C., and L.D. Syzdek (1988), Film drop production as a function of bubble size, J. Geophys. Res. 93,C4, 3649–3654, DOI: 10.1029/JC093iC04p03649.

    Article  Google Scholar 

  3. Bokoye, A.I., A. de la Cosiniere, and T. Cabot (1997), Angstrom turbidity parameters and aerosol optical thickness: A study over 500 solar beam spectra, J. Geophys. Res. 102,D18, 21905–21914, DOI: 10.1029/97JD01393.

    Article  Google Scholar 

  4. Christensen, J.H. (1997), The Danish Eulerian hemispheric model — a three-dimensional air pollution model used for the Arctic, Atmos. Environ. 31,24, 4169–4191, DOI: 10.1016/S1352-2310(97)00264-1.

    Article  Google Scholar 

  5. Dubovik, O., B. Holben, T.F. Eck, A. Smirnov, Y.J. Kaufman, M.D. King, D. Tanré, and I. Slutsker (2002), Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci. 59,3, 590–608, DOI: 10.1175/1520-0469(2002)059〈0590: VOAAOP〉2.0.CO;2.

    Article  Google Scholar 

  6. Fairall, C.W., K.L. Davidson, and G.E. Schacher (1983), An analysis of the surface production of sea-salt aerosols, Tellus 35B,1, 31–39, DOI: 10.1111/j.1600-0889.1983.tb00005.x.

    Article  Google Scholar 

  7. Fantoni, R., L. Fiorani, I.G. Okladnikov, and A. Palucci (2010), Local observations of primary production in the Ross Sea: results of a lidar-calibrated satellite algorithm, Optoelectron. Adv. Mater. — Rapid Commum. 4,5, 759–763.

    Google Scholar 

  8. Fitzgerald, J.W. (1991), Marine aerosols: A review, Atmos. Environ. 25A,3–4, 533–545, DOI: 10.1016/0960-1686(91)90050-H.

    Article  Google Scholar 

  9. Gao, F., K. Bergant, A. Filipčič, B. Forte, D.-X. Hua, X.-Q. Song, S. Stanič, D. Veberič, and M. Zavrtanik (2011), Observations of the atmospheric boundary layer across the land-sea transition zone using a scanning Mie lidar, J. Quant. Spectrosc. Ra, 112,2, 182–188, DOI: 10.1016/j.jqsrt.2010.04.001.

    Article  Google Scholar 

  10. Giannakaki, E., D.S. Balis, V. Amiridis, and C. Zerefos (2010), Optical properties of different aerosol types: seven years of combined Raman-elastic backscatter lidar measurements in Thessaloniki, Greece, Atmos. Meas. Tech. 3,3, 569–578, DOI: 10.5194/amt-3-569-2010.

    Article  Google Scholar 

  11. Gong, S.L., L.A. Barrie, and J.-P. Blanchet (1997), Modelling sea-salt aerosols in the atmosphere: 1. Model development, J. Geophys. Res. 102,D3, 3805–3818, DOI: 10.1029/96JD02953.

    Article  Google Scholar 

  12. Levy, R.C., L.A. Remer, D. Tanre, S. Mattoo, and Y.J. Kaufman (2009), Algorithm for remote sensing of tropospheric aerosol over dark targets from MODIS, Collections 005 and 051: Revision 2.

    Google Scholar 

  13. Markowicz, K.M., P.J Flatau, A.E. Kardas, J. Remiszewska, K. Stelmaszczyk, and L. Woeste (2008), Ceilometer retrieval of the boundary layer vertical aerosol extinction structure, J. Atmos. Oceanic Technol. 25,6, 928–944, DOI: 10.1175/2007JTECHA1016.1.

    Article  Google Scholar 

  14. Markowicz, K.M., T. Zieliński, S. Blindheim, M. Gausa, A.K. Jagodnicka, A.E. Kardas, W. Kumala, S.P. Malinowski, T. Petelski, M. Posyniak, and T. Stacewicz (2012), Study of vertical structure of aerosol optical properties with sun photometers and ceilometer during MACRON campaign in 2007, Acta Geophys. 60,5, 1308–1337, DOI: 10.2478/s11600-011-0056-7.

    Article  Google Scholar 

  15. Monahan, E.C., and G. Mac Niocall (eds.) (1986), Oceanic Whitecaps and their Role in Air-sea Exchange Processes, Oceanographic Sciences Library, Vol. 2, Kluwer Academic Publs., Dordrecht.

    Google Scholar 

  16. Morys, M., F.M. Mims III, S. Hagerup, S.E. Anderson, A. Baker, J. Kia, and T. Walkup (2001), Design, calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer, J. Geophys. Res. 106,D13, 14573–14582, DOI: 10.1029/2001JD900103.

    Article  Google Scholar 

  17. Petelski, T., and J. Piskozub (2006), Vertical coarse aerosol fluxes in the atmospheric surface layer over the North Polar Waters of the Atlantic, J. Geophys. Res. 111, C06039, DOI: 10.1029/2005JC003295.

    Article  Google Scholar 

  18. Rajeev, K., K. Parameswaran, B.V. Thampi, M.K. Mishra, A.K.M. Nair, and S. Meenu (2010), Altitude distribution of aerosols over Southeast Arabian Sea coast during pre-monsoon season: Elevated layers, long-range transport and atmospheric radiative heating, Atmos. Environ. 44,21–22, 2597–2604, DOI: 10.1016/j.atmosenv.2010.04.014.

    Article  Google Scholar 

  19. Resch, F.J., S.J. Darrozes, and G.M. Afeti (1986), Marine liquid aerosol production from bursting of air bubbles, J. Geophys. Res. 91,C1, 1019–1029, DOI: 10.1029/JC091iC01p01019.

    Article  Google Scholar 

  20. Smirnov, A., B.N. Holben, T.F. Eck, O. Dubovik, and I. Slutsker (2000), Cloud-screening and quality control algorithms for the AERONET database, Remote Sens. Environ. 73,3, 337–349, DOI: 10.1016/S0034-4257(00)00109-7.

    Article  Google Scholar 

  21. Smirnov, A., B.N. Holben, T.F. Eck, I. Slutsker, B. Chatenet, and R.T. Pinker (2002), Diurnal variability of aerosol optical depth observed at AERONET (Aerosol Robotic Network) sites, Geophys. Res. Lett. 29,23, 2115, DOI: 10.1029/2002GL016305.

    Article  Google Scholar 

  22. Smirnov, A., B.N. Holben, S.M. Sakerin, D.M. Kabanov, I. Slutsker, M. Chin, T.L. Diehl, L.A. Remer, R. Kahn, A. Ignatov, L. Liu, M. Mishchenko, T.F. Eck, T.L. Kuscera, D. Giles, and O.V. Kopelevich (2006), Ship-based aerosol optical depth measurements in the Atlantic Ocean: Comparison with satellite retrievals and GOCART model, Geophys. Res. Lett. 33, 14, L14817, DOI: 10.1029/2006GL026051.

    Google Scholar 

  23. Smirnov, A., A.M. Sayer, B.N. Holben, N.C. Hsu, S.M. Sakerin, A. Macke, N.B. Nelson, Y. Courcoux, T.J. Smyth, P. Croot, P.K. Quinn, J. Sciare, S.K. Gulev, S. Piketh, R. Losno, S. Kinne, and V.F. Radionov (2012), Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network, Atmos. Meas. Tech. 5,2, 377–388, DOI: 10.5194/amt-5-377-2012.

    Article  Google Scholar 

  24. Vignati, E., G. de Leeuw, and R. Berkowicz (2001), Modeling coastal aerosol transport and effects of surf-produced aerosols on processes in the marine atmospheric boundary layer, J. Geophys. Res. 106,D17, 20225–20238, DOI: 10.1029/2000JD000025.

    Article  Google Scholar 

  25. Welton, E.J., K.J. Voss, P.K. Quinn, P.J. Flatau, K. Markowicz, J.R. Campbell, J.D. Spinhirne, H.R. Gordon, and J.E. Johnson (2002), Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars, J. Geophys. Res. 107,D19, 8019, DOI: 10.1029/2000JD000038.

    Article  Google Scholar 

  26. Witek, M.L., P.J. Flatau, P.K. Quinn, and D.L. Westphal (2007), Global sea-salt modeling: Results and validation against multicampaign shipboard measurements, J. Geophys. Res. 112,D08215, DOI: 10.1029/2006JD007779.

    Google Scholar 

  27. Wu, J. (1988), Bubbles in the near-surface ocean. A general description, J. Geophys. Res. 93,C1, 587–590, DOI: 10.1029/JC093iC01p00587.

    Article  Google Scholar 

  28. Wu, J. (1990), Comment on “Film drop production as a function of bubble size” by D.C. Blanchard and L.D. Syzdek, J. Geophys. Res. 95,C5, 7389–7391, DOI: 10.1029/ JC095iC05p07389.

    Article  Google Scholar 

  29. Zawadzka, O., K.M. Markowicz, A. Pietruczuk, T. Zielinski, and J. Jaroslawski (2013), Impact of urban pollution emitted in Warsaw on aerosol properties, Atmos. Environ. 69,1, 15–28, DOI: 10.1016/j.atmosenv.2012.11.065.

    Article  Google Scholar 

  30. Zhang, M., K. Carder, F.E. Muller-Karger, Z. Lee, and D.B. Goldgof (1999), Noise reduction and atmospheric correction for coastal applications of landsat thematic mapper imagery, Remote Sens. Environ. 70,2, 167–180, DOI: 10.1016/S0034-4257(99)00031-0.

    Article  Google Scholar 

  31. Zielinski, T., and J. Piskozub (2005), Studies of aerosols in the marine boundary layer in the coastal area during the EOPACE’99 campaign, Bound.-Lay. Meteorol. 116,3, 533–541, DOI: 10.1007/s10546-005-0904-6.

    Article  Google Scholar 

  32. Zielinski, T., and A. Zielinski (2002), Aerosol extinction and optical depth in the atmosphere over the Baltic Sea determined with lidar, J. Aerosol Sci. 33,6, 47–61, DOI: 10.1016/S0021-8502(02)00043-5.

    Article  Google Scholar 

  33. Zielinski, T., T. Petelski, P. Makuch, A. Strzalkowska, A. Ponczkowska, K.M. Markowicz, G. Chourdakis, G. Georgoussis, and S. Kratzer (2012), Sudies of aerosols advected to coastal areas with the use of remote techniques, Acta Geophys. 60,5, 1359–1385, DOI: 10.2478/s11600-011-0075-4.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Olga Zawadzka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zawadzka, O., Makuch, P., Markowicz, K.M. et al. Studies of aerosol optical depth with the use of Microtops II sun photometers and MODIS detectors in coastal areas of the Baltic Sea. Acta Geophys. 62, 400–422 (2014). https://doi.org/10.2478/s11600-013-0182-5

Download citation

Key words

  • aerosol optical depth
  • Microtops II
  • Baltic Sea
  • MODIS