Optical properties of long-range transported volcanic ash over Romania and Poland during Eyjafjallajökull eruption in 2010

Abstract

After Eyjafjallajökull volcano eruption on 14 April 2010, due to a complex air mass circulation, Romania was exposed to volcanic ash and its mixture with continental aerosols. Ash particles with an average Ångström (UV-VIS) exponent of 1.4 ± 0.2 and (VIS-IR) of 1.2 ± 0.3, a color ratio (VIS-UV) of 0.54 and (IR-VIS) of 0.49, an average particle depolarization value ∼9.4%, and a lidar ratio of 50 sr were retrieved on 18 April from multiwavelength Raman lidar measurements in Bucharest. Mixed volcanic ash with mineral dust particles advected from Sahara, depolarization ∼12%, Ångström (UV-VIS) exponent of 1.25 ± 0.25 and (VIS-IR) of 1.45 ± 0.25, an increased color ratio (VIS-UV) of 0.61, (IRVIS) of 0.39 and lidar ratio of 53 sr were identified on 28 April. From observations in Poland conducted by an elastic lidar at 532 nm and a ceilometer at 1064 nm we retrieved an average backscatter related Ångström (VIS-IR) exponent of 1.25 ± 0.35, and a color ratio (IR-VIS) of 0.53 in the layer at about 5.5 km during the night of 16/17 April, indicating fresh ash over Warsaw.

This is a preview of subscription content, log in to check access.

References

  1. Ansmann, A., M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michaelis (1992), Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio, Appl. Phys. B 55,1, 18–28, DOI: 10.1007/BF00348608.

    Article  Google Scholar 

  2. Ansmann, A., M. Tesche, S. Gross, V. Freudenthaler, P. Seifert, A. Hiebsch, J. Schmidt, U. Wandinger, I. Mattis, D. Müller, and M. Wiegner (2010), The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany, Geophys. Res. Lett. 37,13, L13810, DOI: 10.1029/2010GL043809.

    Article  Google Scholar 

  3. Ansmann, A., M. Tesche, P. Seifert, S. Gross, V. Freudenthaler, A. Apituley, K.M. Wilson, I. Serikov, H. Linné, B. Heinold, A. Hiebsch, F. Schnell, J. Schmidt, I. Mattis, U. Wandinger, and M. Wiegner (2011), Ash and finemode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010, J. Geophys. Res. 116,D20, D00U02, DOI: 10.1029/2010JD015567.

    Google Scholar 

  4. Belegante, L., D. Nicolae, A. Nemuc, C. Talianu, and C. Derognat (2014), Retrieval of the boundary layer height from active and passive remote sensors. Comparison with a NWP model, Acta Geophys. 62,2, 276–289, DOI: 10.2478/s11600-013-0167-4 (this issue).

    Article  Google Scholar 

  5. Carstea, E., R. Radulescu, L. Belegante, and C. Radu (2010), Volcanic ash monitoring over Bucharest area using a multiwavelength Raman lidar, Optoelectron. Adv. Mater Rapid Commun. 4,12, 2162–2166.

    Google Scholar 

  6. Draxler, R.R., and G.D. Rolph (2010), HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory), NOAA Air Resources Laboratory, Silver Spring, USA, Model access via NOAA ARL READY, http://ready.arl.noaa.gov/HYSPLIT.php.

    Google Scholar 

  7. Durant, A.J., C. Bonadonna, and C.J. Horwell (2010), Atmospheric and environmetal impacts of volcanic particulates, Elements 6,4, 235–240, DOI: 10.2113/gselements.6.4.235.

    Article  Google Scholar 

  8. Fernald, F.G. (1984), Analysis of atmospheric lidar observations: some comments, Appl. Optics 23,5, 652–653, DOI: 10.1364/AO.23.000652.

    Article  Google Scholar 

  9. Flentje, H., H. Claude, T. Elste, S. Gilge, U. Köhler, C. Plass-Dülmer, W. Steinbrecht, W. Thomas, A. Werner, and W. Fricke (2010), The Eyjafjallajökull eruption in April 2010 — detection of volcanic plume using in-situ measurements, ozone sondes and lidar-ceilometer profiles, Atmos. Chem. Phys. 10,20, 10085–10092, DOI: 10.5194/acp-10-10085-2010.

    Article  Google Scholar 

  10. Freudenthaler, V., M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner (2009), Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006, Tellus B 61,1, 165–179, DOI: 10.1111/j.1600-0889.2008.00396.x.

    Article  Google Scholar 

  11. Gasteiger, J., S. Gross, V. Freudenthaler, and M. Wiegner (2011), Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements, Atmos. Chem. Phys. 11,5, 2209–2223, DOI: 10.5194/acp-11-2209-2011.

    Article  Google Scholar 

  12. Gross, S., V. Freudenthaler, M. Wiegner, J. Gasteiger, A. Geiss, and F. Schnell (2012), Dual-wavelength linear depolarization ratio of volcanic aerosols: Lidar measurements of the Eyjafjallajökull plume over Maisach, Germany, Atmos. Environ. 48, 85–96, DOI: 10.1016/j.atmosenv.2011.06.017.

    Article  Google Scholar 

  13. Hegerl, G., F. Zwiers, P. Braconnot, N. Gillett, Y. Luo, J. Marengo, N. Nicholls, J. Penner, and P. Stott (2007), Understanding and attributing climate change. In: S. Solomon et al. (ed.), Climate Change 2007. The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 663–745, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  14. Hess, M., P. Koepke, and I. Schult (1998), Optical properties of aerosols and clouds: the software package OPAC, Bull. Am. Meteor. Soc. 79,5, 831–844, DOI: 10.1175/1520-0477(1998)079〈0831:OPOAAC〉2.0.CO;2.

    Article  Google Scholar 

  15. Karasiński, G., M. Posyniak, M. Bloch, P. Sobolewski, Ł. Małarzewski, and J. Soroka (2014), Lidar observations of volcanic dust over Polish Polar Station at Hornsund after eruptions of Eyjafjallajökull and Grímsvötn, Acta Geophys. 62,2, 316–339, DOI: 10.2478/s11600-013-0183-4 (this issue).

    Article  Google Scholar 

  16. Klett, J.D. (1981), Stable analytical inversion solution for processing lidar returns, Appl. Optics 20,2, 211–220, DOI: 10.1364/AO.20.000211.

    Article  Google Scholar 

  17. Klett, J.D. (1985), Lidar inversion with variable backscatter/extinction ratios, Appl. Optics 24,11, 1638–1643, DOI: 10.1364/AO.24.001638.

    Article  Google Scholar 

  18. Markowicz, K.M., T. Zielinski, A. Pietruczuk, M. Posyniak, O. Zawadzka, P. Makuch, I.S. Stachlewska, A.K. Jagodnicka, T. Petelski, W. Kumala, P. Sobolewski, and T. Stacewicz (2012), Remote sensing measurements of the volcanic ash plume over Poland in April 2010, Atmos. Environ. 48, 66–75, DOI: 10.1016/j.atmosenv.2011.07.015.

    Article  Google Scholar 

  19. Mather, T.A., A.G. Allen, C. Oppenheimer, D.M. Pyle, and A.J.S. McGonigle (2003), Size-resolved characterisation of soluble ions in the particles in the tropospheric plume of Masaya volcano, Nicaragua: Origins and plume processing, J. Atmos. Chem. 46,3, 207–237, DOI: 10.1023/A:1026327502060.

    Article  Google Scholar 

  20. McCormick, M.P., L.W. Thomason, and C.R. Trepte (1995), Atmospheric effects of the Mt Pinatubo eruption, Nature 373,6513, 399–404, DOI: 10.1038/373399a0.

    Article  Google Scholar 

  21. McNeil, W.R., and A.I. Carswell (1975), Lidar polarization studies of the troposphere, Appl. Optics 14,9, 2158–2168, DOI: 10.1364/AO.14.002158.

    Article  Google Scholar 

  22. Mona, L., A. Amodeo, G. D’Amico, A. Giunta, F. Madonna, and G. Pappalardo (2012), Multi-wavelength Raman lidar observations of the Eyjafjallajökull volcanic cloud over Potenza, southern Italy, Atmos. Chem. Phys. 12, 2229–2244, DOI: 10.5194/acp-12-2229-2012.

    Article  Google Scholar 

  23. Nemuc, A., L. Belegante, and R. Radulescu (2011), One year of sunphotometer measurements in Romania, Rom. J. Phys. 56,3–4, 550–562.

    Google Scholar 

  24. Nicolae, D., C. Talianu, R.-E. Mamouri, E. Carstea, A. Papayannis, and G. Tsaknakis (2008), Air mass modification processes over the Balkans area detected by aerosol Lidar techniques, Optoelectron. Adv. Mater. Rapid Commun. 2,6, 394–402.

    Google Scholar 

  25. Nicolae, D., A. Nemuc, and L. Belegante (2010a), Mix of volcanic ash and Saharan dust over Romania during Eyjafjallajökull eruption. In: Proc. SPIE, Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VI, 26 October 2010, Vol. 7832, DOI: 10.1117/12.869021.

  26. Nicolae, D., J. Vasilescu, E. Carstea, K. Stebel, and F. Prata (2010b), Romanian atmospheric research 3D observatory: Synergy of instruments, Rom. Rep. Phys. 62,4, 838–853.

    Google Scholar 

  27. Papayannis, A., R.E. Mamouri, V. Amiridis, E. Giannakaki, I. Veselovskii, P. Kokkalis, G. Tsaknakis, D. Balis, N.I. Kristiansen, A. Stohl, M. Korenskiy, K. Allakhverdiev, M.F. Huseyinoglu, and T. Baykara (2012), Optical properties and vertical extension of aged ash layers over the Eastern Mediterranean as observed by Raman lidars during the Eyjafjallajokull eruption in May 2010, Atmos. Environ. 48, 56–65, DOI: 10.1016/j.atmosenv.2011.08.037.

    Article  Google Scholar 

  28. Pappalardo, G., A. Amodeo, A. Ansmann, A. Apituley, L. Alados Arboledas, D. Balis, C. Böckmann, A. Chaikovsky, A. Comeron, G. D’Amico, F. De Tomasi, V. Freudenthaler, E. Giannakaki, A. Giunta, I. Grigorov, O. Gustafsson, S. Gross, M. Haeffelin, M. Iarlori, S. Kinne, H. Linné, F. Madonna, R. Mamouri, I. Mattis, M. McAuliffe, F. Molero, L. Mona, D. Műller, V. Mitev, D. Nicolae, A. Papayannis, M.R. Perrone, A. Pietruczuk, M. Pujadas, J.-P. Putaud, F. Ravetta, V. Rizi, I. Serikov, M. Sicard, V. Simeonov, N. Spinelli, K. Stebel, T. Trickl, U. Wandinger, X. Wang, F. Wagner, and M. Wiegner (2010), Dispersion and evolution of the Eyjafjallajökull ash plume over Europe: vertically resolved measurements with the European LIDAR network EARLINET. In: 7th European Geosciences Union General Assembly 2010, 2–7 May 2010, Vienna, Austria, EGU2010-15731.

    Google Scholar 

  29. Pappalardo, G., L. Mona, G. D’Amico, U. Wandinger, M. Adam, A. Amodeo, A. Ansmann, A. Apituley, L. Alados Arboledas, D. Balis, J.A. Boselli, J.A. Bravo-Aranda, A. Chaikovsky, A. Comeron, J. Cuesta, F. De Tomasi, V. Freudenthaler, M. Gausa, E. Giannakaki, H. Giehl, A. Giunta, I. Grigorov, S. Gross, M. Haeffelin, A. Hiebsch, M. Iarlori, D. Lange, H. Linné, F. Madonna, I. Mattis, R.-E. Mamouri, M.A.P. McAuliffe, V. Mitev, F. Molero, F. Navas-Guzman, D. Nicolae, A. Papayannis, M.R. Perrone, C. Pietras, A. Pietruczuk, G. Pisani, J. Preissler, M. Pujadas, V. Rizi, A.A. Ruth, J. Schmidt, F. Schnell, P. Seifert, I. Serikov, M. Sicard, V. Simeonov, N. Spinelli, K. Stebel, M. Tesche, T. Trickl, X. Wang, F. Wagner, M. Wiegner, and K.M. Wilson (2012), Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET, Atmos. Chem. Phys. Discuss. 12,11, 30203–30257, DOI: 10.5194/acpd-12-30203-2012.

    Article  Google Scholar 

  30. Pietruczuk, A., J.W. Krzyścin, J. Jarosławski, J. Podgórski, P. Sobolewski, and J. Wink (2010), Eyjafjallajökull volcano ash observed over Belsk (52°N, 21°E), Poland, in April 2010, Int. J. Remote Sens. 31,15, 3981–3986, DOI: 10.1080/01431161.2010.498030.

    Article  Google Scholar 

  31. Radu, C., L. Belegante, C. Talianu, and D. Nicolae (2010), Optimization of the multiwavelength Raman lidar during EARLI09 campaign, J. Optoecectron. Adv. Mater. 12,1, 165–168.

    Google Scholar 

  32. Raes, F., R. Van Dingenen, E. Vignati, J. Wilson, J.-P. Putaud, J.H. Seinfeld, and P. Adams (2000), Formation and cycling of aerosols in the global troposphere, Atmos. Env. 34,25, 4215–4240, DOI: 10.1016/S1352-2310(00)00239-9.

    Article  Google Scholar 

  33. Rozwadowska, A., and P. Sobolewski (2010), Variability in aerosol optical properties at Hornsund, Spitsbergen, Oceanologia 52,4, 599–620, DOI: 10.5697/oc.52-4.599.

    Article  Google Scholar 

  34. Sokół, P., I.S. Stachlewska., I. Ungureanu, and S. Stefan (2014), Evaluation of the boundary layer morning transition using the CL-31 ceilometer signals, Acta Geophys. 62,2, 367–380, DOI: 10.2478/s11600-013-0158-5 (this issue).

    Article  Google Scholar 

  35. Stachlewska, I.S., and K.M. Markowicz (2010), On forward Klett’s inversion of ceilometer signals. In: Reviewed Papers of 25th International Laser Radar Conference, 5–9 July 2010, St. Petersburg, Russia, 1154–1157.

    Google Scholar 

  36. Stachlewska, I.S., R. Neuber, A. Lampert, C. Ritter, and G. Wehrle (2010), AMALi — the Airborne Mobile Aerosol Lidar for Arctic research, Atmos. Chem. Phys. 10,6, 2947–2963, DOI: 10.5194/acp-10-2947-2010.

    Article  Google Scholar 

  37. Stachlewska, I.S., M. Piądłowski, S. Migacz, A. Szkop, A.J. Zielińska, and P.L. Swaczyna (2012), Ceilometer observations of the boundary layer over Warsaw, Poland, Acta Geophys. 60,5, 1386–1412, DOI: 10.2478/s11600-012-0054-4.

    Article  Google Scholar 

  38. Szkop, A. (2012), Two-angle approach for extinction coefficient and optical depth determination from ceilometer data, M.Sc. Thesis, Archive of Diplomas, University of Warsaw, https://apd.uw.edu.pl.

    Google Scholar 

  39. Timofte, A., M.M. Cazacu, R. Radulescu, L. Belegante, D.G. Dimitriu, and S. Gurlui (2011), Romanian Lidar investigation of the Eyjafjallajökull volcanic ash, Environ. Eng. Manag. J. 10,1, 91–97.

    Google Scholar 

  40. Vasilescu, J., A. Nemuc, L. Marmureanu, and D. Nicolae (2011), Aerosol size distribution and composition near Bucharest during May 2010, Environ. Eng. Manag. J. 10,1, 121–126.

    Google Scholar 

  41. Wiegner, M., and A. Geiss (2012), Aerosol profiling with the JenOptik ceilometer CHM15kx, Atmos. Meas. Tech. 5,8, 1953–1964, DOI: 10.5194/amt-5-1953-2012.

    Article  Google Scholar 

  42. Witham, C.S., M.C. Hort, R. Potts, R. Servranckx, P. Husson, and F. Bonnardot (2007), Comparison of VAAC atmospheric dispersion models using the 1 November 2004 Grimsvötn eruption, Meteorol. Appl. 14,1, 27–38, DOI: 10.1002/met.3.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Camelia Talianu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nemuc, A., Stachlewska, I.S., Vasilescu, J. et al. Optical properties of long-range transported volcanic ash over Romania and Poland during Eyjafjallajökull eruption in 2010. Acta Geophys. 62, 350–366 (2014). https://doi.org/10.2478/s11600-013-0180-7

Download citation

Key words

  • lidar
  • ceilometer
  • volcanic ash
  • mineral dust