Skip to main content
Log in

Improving reservoir thickness prediction using seismic attributes and attributes fusion

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Usage of any single attribute would introduce unacceptable uncertainty due to limited reservoir thickness and distribution, and strong lateral variations in lithological traps. In this paper, a wide range of prestack and post-stack seismic attributes is utilized to identify a range of properties of turbidity channel sandstone reservoir in Block L118 of J Oilfield, China. In order to better characterize the turbidity channel and lower the uncertainty, we applied multi-attribute fusion to weight a variety of seismic attributes in terms of their relevance to the identification of turbidity channel reservoir. Turbidity channel boundary is clearly present in the new attribute and the reservoir thickness prediction is improved. Additionally, fluid potential of reservoir was predicted using this fused attribute with a high value anomaly indicating high fluid potential. The multi-attribute fusion is a valid approach for the fine prediction of lithologic reservoirs, reducing the risks typically associated with exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barnes, A.E. (2007), A tutorial on complex seismic trace analysis, Geophysics 72,6, W33–W43, DOI: 10.1190/1.2785048.

    Article  Google Scholar 

  • Castagna, J.P., H.W. Swan, and D.J. Foster (1998), Framework for AVO gradient and intercept interpretation, Geophysics 63,3, 948–956, DOI: 10.1190/1.1444406.

    Article  Google Scholar 

  • Cui, J., L.-G. Han, Q.-K. Liu, X.-W. Zhang, and L. Han (2010), P-SV wave elastic impedance and fluid identification factor in weakly anisotropic media, Appl. Geophys. 7,2, 135–142, DOI: 10.1007/s11770-010-0237-1.

    Article  Google Scholar 

  • Duffaut, K., and M. Landrø (2007), Vp/Vs ratio versus differential stress and rock consolidation — A comparison between rock models and time-lapse AVO data, Geophysics 72,5, C81–C94, DOI: 10.1190/1.2752175.

    Article  Google Scholar 

  • Hoversten, G.M., F. Cassassuce, E. Gasperikova, G.A. Newman, J.-S. Chen, Y. Rubin, Z.-S. Hou, and D. Vasco (2006), Direct reservoir parameter estimation using joint inversion of marine seismic AVA and CSEM data, Geophysics 71,3, C1–C13, DOI: 10.1190/1.2194510.

    Article  Google Scholar 

  • Huuse, M., and D.A. Feary (2005), Seismic inversion for acoustic impedance and porosity of Cenozoic cool-water carbonates on the upper continental slope of the Great Australian Bight, Mar. Geol. 215,3–4, 123–134, DOI: 10.1016/j.margeo.2004.12.005.

    Article  Google Scholar 

  • Lindeseth, R.O. (1979), Synthetic sonic logs — a process for stratigraphic interpretation, Geophysics 44,1, 3–26, DOI: 10.1190/1.1440922.

    Article  Google Scholar 

  • Løseth, H., M. Gading, and L. Wensaas (2009), Hydrocarbon leakage interpreted on seismic data, Mar. Petrol. Geol. 26,7, 1304–1319, DOI: 10.1016/j.marpetgeo.2008.09.008.

    Article  Google Scholar 

  • Marfurt, K.J., and R.L. Kirlin (2001), Narrow-band spectral analysis and thin-bed tuning, Geophysics 66,4, 1274–1283, DOI: 10.1190/1.1487075.

    Article  Google Scholar 

  • Min, B., L.-S. Shu, H.-B. Yin, W.-J. Xin, and D.-R. Zhang (2007), Conglomeratic reservoir characterization in the Caiyu field of the Langgu sag, North China, Mar. Petrol. Geol. 24,10, 579–590, DOI: 10.1016/j.marpetgeo.2007.04.004.

    Article  Google Scholar 

  • Morozov, I.B., and J.-F. Ma (2009), Accurate poststack acoustic-impedance inversion by well-log calibration, Geophysics 74,5, R59–R67, DOI: 10.1190/1.3170687.

    Article  Google Scholar 

  • Quakenbush, M., B. Shang, and C. Tuttle (2006), Poisson impedance, The Leading Edge 25,2, 128–138, DOI: 10.1190/1.2172301.

    Article  Google Scholar 

  • Razavi, S.N., and C.T. Haas (2012), Reliability-based hybrid data fusion method for adaptive location estimation in construction, J. Comput. Civ. Eng. 26,1, 1–10, DOI: 10.1061/(ASCE)CP.1943-5487.0000101.

    Article  Google Scholar 

  • Robertson, J.D., and H.H. Nogami (1984), Complex seismic trace analysis of thin beds, Geophysics 49,4, 344–352, DOI: 10.1190/1.1441670.

    Article  Google Scholar 

  • Schütt, H., J. Köhler, O. Boyd, and H. Spetzler (2000), Seismic attenuation in partially saturated dime-shaped cracks, Pure Appl. Geophys. 157,3, 435–448, DOI: 10.1007/s000240050007.

    Article  Google Scholar 

  • Shuey, R.T. (1985), A simplification of the Zoeppritz equations, Geophysics 50,4, 609–614, DOI: 10.1190/1.1441936.

    Article  Google Scholar 

  • Zhang, G.L. (2011), Low-frequency absorption attenuation gradient detection based on improved generalized S transform, Chinese J. Geophys. 54,9, 2407–2411, DOI: 10.3969/j.issn.0001-5733.2011.09.024 (in Chinese).

    Google Scholar 

  • Zheng, H.-S., I.B. Morozov, and Z.-J. Zhang (2007), Numerical analysis of onedimensional nonlinear acoustic wave, Acta Geophys. 55,3, 313–323, DOI: 10.2478/s11600-007-0012-8.

    Article  Google Scholar 

  • Zoeppritz, K. (1919), On the reflection and propagation of seismic waves at discontinuities, Erdbebenwellen 7 B, 66–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haojie Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Lei, X., Mao, C. et al. Improving reservoir thickness prediction using seismic attributes and attributes fusion. Acta Geophys. 62, 544–563 (2014). https://doi.org/10.2478/s11600-013-0174-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-013-0174-5

Key words

Navigation