Advertisement

Acta Geophysica

, Volume 62, Issue 1, pp 241–258 | Cite as

Sub-monthly gravity field recovery from simulated multi-GRACE mission type

  • Basem ElsakaEmail author
Research Article

Abstract

Monthly solutions of the current GRACE mission are affected by the aliasing problem. In fact, sub-monthly temporal sampling may reduce the temporal aliasing errors but this will be done at the cost of reduced spatial sampling.

Reducing the effects of temporal aliasing can be achieved by setting two pairs of satellites in different orbital planes. In this paper, we investigate the so-called Multi-GRACE constellation to improve temporal and spatial resolution for the GRACE-type mission without deteriorating accuracy. We investigate two scenarios: the Multi-GRACE ΔM that improves the temporal sampling only and the Multi-GRACE ΔΩ that improves the spatial sampling besides the temporal one in time span of only 12 days for the hydrological signal as a time-varying gravity field component.

Our findings indicate that the hydrological signal can be submonthly recovered and the aliasing errors can be reduced as well by increasing temporal resolution (sub-month) via the Multi-GRACE ΔΩ constellations.

Key words

gravity field recovery Multi-GRACE constellation hydrological signal recovery aliasing effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bender, P.L., D.N. Wiese, and R.S. Nerem (2008), A possible dual-GRACE mission with 90 degree and 63 degree inclination orbits. In: Proc. 3rd Int. Symp. on Formation Flying, Missions and Technologies, ESA/ESTEC, 23-25 April, Noordwijk, The Netherlands, 1–6.Google Scholar
  2. Columbo, O.L. (1984), The global mapping of gravity with two satellites, Netherlands Geodetic Commission, Publications on Geodesy, Vol. 7,No. 3.Google Scholar
  3. Dirac, P.A.M. (1958), The Principles of Quantum Mechanics, 4th ed., The International Series of Monographs on Physics, Vol. 27, Oxford University Press, Oxford.Google Scholar
  4. Elsaka, B. (2010), Simulated satellite formation flights for detecting the temporal variations of the Earth’s gravity field, Ph.D. Thesis, University of Bonn, Germany.Google Scholar
  5. Elsaka, B., and K.-H. Ilk (2009), Simulated multiple formation flights for future gravity field recovery, Geophys. Res. Abstr. 11, EGU General Assembly 2009, Abstr. no. EGU2009-529.Google Scholar
  6. Elsaka, B., J. Kusche, and K.-H. Ilk (2012), Recovery of the Earth’s gravity field from formation-flying satellites: Temporal aliasing issues, Adv. Space Res. 50,11, 1534–1552, DOI: 10.1016/j.asr.2012.07.016.CrossRefGoogle Scholar
  7. Förste, C., F. Flechtner, R. Schmidt, R. Stubenvoll, M. Rothacher, J. Kusche, H. Neumayer, R. Biancale, J.-M. Lemoine, F. Barthelmes, S. Bruinsma, R. König, and U. Meyer (2008), EIGEN-GL05C — A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation, Geophys. Res. Abstr. 10, EGU General Assembly 2008, Abstr. no. EGU2008-A-03426.Google Scholar
  8. Han, S., C. Jekeli, and C. Shum (2004), Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field, J. Geophys. Res. 109,B4, 403, DOI: 10.1029/2003JB002,501.CrossRefGoogle Scholar
  9. Kaula, W.M. (1966), Theory of Satellite Geodesy: Applications of Satellites to Geodesy, Blaisdell Publishing Company, Waltham, 124 pp.Google Scholar
  10. Kusche, J. (2007), Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models, J. Geodesy 81,11, 733–749, DOI: 10.1007/s00190-007-0143-3.CrossRefGoogle Scholar
  11. Mayer-Gürr, T. (2006), Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE, Ph.D. Thesis, University of Bonn, Germany (in German).Google Scholar
  12. Mayer-Gürr, T., A. Eicker, E. Kurtenbach, and K.-H. Ilk (2010), ITG-GRACE: Global static and temporal gravity field models from GRACE data. In: F.M. Flechtner, T. Gruber, A. Güntner, M. Mandea, M. Rothacher, T. Schöne, and J. Wickert (eds.), System Earth via Geodetic-Geophysical Space Techniques, Advanced Technologies in Earth Sciences, Springer, Berlin Heidelberg, 159–168, DOI: 10.1007/978-3-642-10228-8_13.CrossRefGoogle Scholar
  13. Mayer-Gürr, T., E. Kurtenbach, A. Eicker, and J. Kusche (2011), The ITG-Grace 2010 gravity field model, Institute of Geodesy and Geoinformation, Bonn University, Bonn, Germany, http://www.igg.uni-bonn.de/apmg/index.php.Google Scholar
  14. Reubelt, T., N. Sneeuw, and M.A. Sharifi (2009), Future mission design options for spatio-temporal geopotential recovery. In: Proc. IAG Int. Symposium on Gravity, Geoid and Earth Observation, 23–27 June 2008, Crete, Greece.Google Scholar
  15. Rodell, M., P.R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J.K. Entin, J.P. Walker, D. Lohmann, and D. Toll (2004), The global land data assimilation system, Bull. Am. Meteor. Soc. 85,3, 381–394, DOI: 10.1175/BAMS-85-3-381.CrossRefGoogle Scholar
  16. Swenson, S, and J. Wahr (2006), Post-processing removal of correlated errors in GRACE data, Geophys. Res. Lett. 33,8, L08402, DOI: 10.1029/2005GL025285.CrossRefGoogle Scholar
  17. Tapley, B., S. Bettadpur, M. Watkins, and C. Reigber (2004), The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett. 31, 9, DOI: 10.1029/2004GL019920.CrossRefGoogle Scholar
  18. Tapley, B., J. Ries, S. Bettadpur, D. Chambers, M. Cheng, F. Condi, and S. Poole (2007), The GGM03 mean earth gravity model from GRACE. In: American Geophysical Union, Fall Meeting 2007, Abstr. no. G42A-03.Google Scholar
  19. Thompson, P.F., S.V. Bettadpur, and B.D. Tapley (2004), Impact of short period, non-tidal, temporal mass variability on GRACE gravity estimates, Geophys. Res. Lett. 31,6, 619, DOI: 10.1029/2003GL019285.CrossRefGoogle Scholar
  20. Visser, P.N.A.M., N. Sneeuw, T. Reubelt, M. Losch, and T. Van Dam (2010), Spaceborne gravimetric satellite constellations and ocean tides: aliasing effects, Geophys. J. Int. 181,2, 789–805, DOI: 10.1111/j.1365-246X.2010.04557.x.Google Scholar
  21. Wiese, D.N. (2011) Optimizing two pairs of GRACE-like satellites for recovering temporal gravity variations. Ph.D. Thesis, Univ. Colorado, Boulder, USA.Google Scholar
  22. Wiese, D.N., P. Visser, and R.S. Nerem (2011), Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors, Adv. Space Res. 48,6, 1094–1107, DOI: 10.1016/j.asr.2011.05.027.CrossRefGoogle Scholar
  23. Wiese, D.N., R.S. Nerem, and F.G. Lemoine (2012), Design considerations for a dedicated gravity recovery satellite mission consisting of two pairs of satellites, J. Geodesy 86,2, 81–98, DOI: 10.1007/s00190-011-0493-8.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Institute of Geodesy and GeoinformationBonn UniversityBonnGermany
  2. 2.National Research Institute of Astronomy and GeophysicsNRIAGHelwan, CairoEgypt

Personalised recommendations