Skip to main content

Water vapour mixing ratio profiles over Hornsund, Arctic. Intercomparison of lidar and AIRS results


Since October 2009, a ground-based Raman lidar system has been deployed to perform a regular, night-time, vertical sounding of a water vapour content in the lower and middle troposphere above Polish Polar Station at Hornsund (77.00°N, 15.55°E, 10 m a.s.l.) in the Arctic. The water vapour mixing ratio profiles were obtained for the atmosphere up to 6 km altitude, based on analysis of inelastic Raman backscattering signals from nitrogen molecules (at 387 nm) and water vapour particles (at 407 nm), calibrated with the data from a local Vaisala’s automatic meteorological station. The results obtained for winter seasons in the years 2009–2012 are in a good general agreement with the results obtained from the atmospheric infrared sounder (AIRS) on the Aqua satellite.

This is a preview of subscription content, access via your institution.


  1. Chen, Y., J.R. Miller, J.A. Francis, and G.L. Russell (2011), Projected regime shift in Arctic cloud and water vapor feedbacks, Environ. Res. Lett. 6,4, 044007, DOI: 10.1088/1748-9326/6/4/044007.

    Article  Google Scholar 

  2. Coulson, K.L. (1959), Characteristic of the radiation emerging from the top of a Rayleigh atmosphere — I: Intensity and polarization, Planet. Space Sci. 1,4, 265–276, DOI: 10.1016/0032-0633(59)90031-5.

    Article  Google Scholar 

  3. Gerding, M., Ch. Ritter, M. Müller, and R. Neuber (2004), Tropospheric water vapor soundings by lidar at high Arctic latitudes, Atmos. Res. 71,4, 289–302, DOI: 10.1016/j.atmosres.2004.07.002.

    Article  Google Scholar 

  4. Harries, J.E. (1997), Atmospheric radiation and atmospheric humidity, Q. J. Roy. Meteorol. Soc. 123,544, 2173–2186, DOI: 10.1002/qj.49712354402.

    Article  Google Scholar 

  5. Hoffmann, A., C. Ritter, M. Stock, M. Shiobara, A. Lampert, M. Maturilli, T. Orgis, R. Neuber, and A. Herber (2009), Ground-based lidar measurements from Ny-Ålesund during ASTAR 2007, Atmos. Chem. Phys. 9,22, 9059–9081, DOI: 10.5194/acp-9-9059-2009.

    Article  Google Scholar 

  6. Karasiński, G., M. Posyniak, M. Bloch, P. Sobolewski, Ł. Małarzewski, and J. Soroka (2014), Lidar observations of volcanic dust over Polish Polar Station at Hornsund after eruptions of Eyjafjallajökull and Grimsvötn, Acta Geophys. 62,2, 316–339, DOI: 10.2478/s11600-013-0183-4 (this issue).

    Article  Google Scholar 

  7. Moss, A., R.J. Sica, E. McCullough, K. Strawbridge, K. Walker, and J. Drummond (2012), Calibration and validation of water vapour lidar measurements from Eureka, Nunavut using radiosondes and the Atmospheric Chemistry Experiment Fourier transform spectrometer, Atmos. Meas. Tech. Discuss. 5,4, 5665–5689, DOI: 10.5194/amtd-5-5665-2012.

    Article  Google Scholar 

  8. Neely, R.R., and J.P. Thayer (2011), Raman lidar profiling of tropospheric water vapor over Kangerlussuaq, Greenland, J. Atmos. Ocean. Tech. 28,9, 1141–1148, DOI: 10.1175/JTECH-D-10-05021.1.

    Article  Google Scholar 

  9. Nott, G.J., T.J. Duck, J.G. Doyle, M.E.W. Coffin, C. Perro, C.P. Thackray, J.R. Drummond, P.F. Fogal, E. McCullough, and R.J. Sica (2012), A remotely operated lidar for aerosol, temperature, and water vapor profiling in the High Arctic, J. Atmos. Ocean. Tech. 29,2, 221–234, DOI: 10.1175/JTECH-D-11-00046.1.

    Article  Google Scholar 

  10. Pietruczuk, A., and G. Karasiński (2010), LIDAR at Polish Polar Station, instrument design and first results. In: Reviewed Papers of 25th International Laser Radar Conference, 5–9 July 2010, St. Petersburg, Russia.

    Google Scholar 

  11. Serreze, M.C., A.P. Barrett, and J. Stroeve (2012), Recent changes in tropospheric water vapor over the Arctic as assessed from radiosondes and atmospheric reanalyses, J. Geophys. Res. 117,D10, D10104, DOI: 10.1029/2011JD017421.

    Article  Google Scholar 

  12. Stachlewska, I.S., and C. Ritter (2010), On retrieval of lidar extinction profiles using Two-Stream and Raman techniques, Atmos. Chem. Phys. 10,6, 2813–2824, DOI: 10.5194/acp-10-2813-2010.

    Article  Google Scholar 

  13. Stachlewska, I.S., R. Neuber, A. Lampert, C. Ritter, and G. Wehrle (2010), AMALi — the Airborne Mobile Aerosol Lidar for Arctic research, Atmos. Chem. Phys. 10,6, 2947–2963, DOI: 10.5194/acp-10-2947-2010.

    Article  Google Scholar 

  14. Veselovskii, I.A., H.K. Cha, D.H. Kim, S.C. Choi, and J.M. Lee (2000), Raman lidar for the study of liquid water and water vapor in the troposphere, Appl. Phys. B 71,1, 113–117, DOI: 10.1007/s003400000290.

    Article  Google Scholar 

  15. Whiteman, D.N. (2003), Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols, Appl. Optics 42,15, 2593–2608, DOI: 10.1364/AO.42.002593.

    Article  Google Scholar 

  16. Whiteman, D.N., K.D. Evans, B. Demoz, D.O.C. Starr, E.W. Eloranta, D. Tobin, W. Feltz, G.J. Jedlovec, S.I. Gutman, G.K. Schwemmer, M. Cadirola, S.H. Melfi, and F.J. Schmidlin (2001), Raman lidar measurements of water vapor and cirrus clouds during the passage of Hurricane Bonnie, J. Geophys. Res. 106,D6, 5211–5225, DOI: 10.1029/2000JD900621.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Magdalena Bloch.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bloch, M., Karasiński, G. Water vapour mixing ratio profiles over Hornsund, Arctic. Intercomparison of lidar and AIRS results. Acta Geophys. 62, 290–301 (2014).

Download citation

Key words

  • water vapour mixing ratio
  • Raman lidar
  • Arctic
  • remote sensing
  • AIRS