Skip to main content

Retrieval of the boundary layer height from active and passive remote sensors. Comparison with a NWP model

Abstract

In this study, we used boundary layer heights derived from lidar in Romania to validate the Weather Research Forecast (WRF) model improved by ARIA Technologies SA in the framework of ROMAIR LIFE project. Lidar retrievals were also compared to the retrievals from meteorological data, both modeled (Global Data Assimilation System; GDAS) and measured (microwave radiometry). Both the gradient and the wavelet covariance methods were used to compute the boundary layer height (BLH) from the range corrected lidar signal, and their equivalence was shown.

The analysis was performed on 102 datasets, spread over all seasons and 3 years (2009–2011). A good agreement was found for the remote sensors (lidar and microwave radiometer) which are co-located and measure simultaneously. The correlation of the measured boundary layer height and the modelled one was 0.66 for the entire dataset, and 0.73 when considering daytime data, i.e., for a well defined boundary layer. A systematic underestimation of the boundary layer height by the WRF during non-convective periods (nocturne, stable atmosphere) was found.

This is a preview of subscription content, access via your institution.

References

  1. Angevine, W.M., A.B. White, and S.K. Avery (1994), Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler, Bound.-Lay. Meteorol. 68,4, 375–385, DOI: 10.1007/BF00706797.

    Article  Google Scholar 

  2. Baars, H., A. Ansmann, R. Engelmann, and D. Althausen (2008), Continuous monitoring of the boundary-layer top with lidar, Atmos. Chem. Phys. 8,3, 7281–7296, DOI: 10.5194/acp-8-7281-2008.

    Article  Google Scholar 

  3. Cohn, S.A., and W.M. Angevine (2000), Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars, J. Appl. Meteor. 39,8, 1233–1247, DOI: 10.1175/1520-0450(2000)039〈1233:BLHAEZ〉2.0. CO;2.

    Article  Google Scholar 

  4. Freudenthaler, V., M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner (2009), Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006, Tellus B 61,1, 165–179, DOI: 10.1111/j.1600-0889.2008.00396.x.

    Article  Google Scholar 

  5. Hong, S.-Y., and H.-L. Pan (1996), Nonlocal boundary layer vertical diffusion in a medium-range forecast model, Mon. Wea. Rev. 124,10, 2322–2339, DOI: 10.1175/1520-0493(1996)124〈2322:NBLVDI〉2.0.CO;2.

    Article  Google Scholar 

  6. Hong, S.-Y., Y. Noh, and J. Dudhia (2006), A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Wea. Rev. 134,9, 2318–2341, DOI: 10.1175/MWR3199.1.

    Article  Google Scholar 

  7. Honoré, C., L. Rouïl, R. Vautard, M. Beekmann, B. Bessagnet, A. Dufour, C. Elichegaray, J.-M. Flaud, L. Malherbe, F. Meleux, L. Menut, D. Martin, A. Peuch, V.-H. Peuch, and N. Poisson (2008), Predictability of European air quality: Assessment of three years of operational forecasts and analyses by the PREV’AIR system, J. Geophys. Res. 113,D4, D04301, DOI: 10.1029/2007JD 008761.

    Article  Google Scholar 

  8. Jacobson, M.Z. (2005), Fundamentals of Atmospheric Modeling, 2nd ed., Cambridge University Press, Cambridge, 813 pp.

    Book  Google Scholar 

  9. Löhnert, U., and O. Maier (2011), Assessing the potential of passive microwave radiometers for continuous temperature profile retrieval using a three year data set from Payerne, Atmos. Meas. Tech. Discuss. 4, 7435–7469, DOI: 10.5194/amtd-4-7435-2011.

    Article  Google Scholar 

  10. Löhnert, U., S. Crewell, O. Krasnov, E. O’Connor, and H. Russchenberg (2008), Advances in continuously profiling the thermodynamic state of the boundary layer: Integration of measurements and methods, J. Atmos. Oceanic Technol. 25,8, 1251–1266, DOI: 10.1175/2007JTECHA961.1.

    Article  Google Scholar 

  11. Noh, Y., W.G. Cheon, S.Y. Hong, and S. Raasch (2003), Improvement of the Kprofile model for the planetary boundary layer based on large eddy simulation data, Bound.-Lay. Meteorol. 107,2, 401–427, DOI: 10.1023/A:1022146015946.

    Article  Google Scholar 

  12. Pappalardo, G. (2010), EARLINET: the European Lidar network for aerosol study at continental scale, EARSeL Newslett. 82, 13–18.

    Google Scholar 

  13. Radu, C., L. Belegante, C. Talianu, and D. Nicolae (2010), Optimization of the multiwavelength Raman lidar during EARLI09 campaign, J. Optoelectron. Adv. Mat. 12,1, 165–168.

    Google Scholar 

  14. Rahn, D.A., and R. Garreaud (2010), Marine boundary layer over the subtropical southeast Pacific during VOCALS-REx — Part 1: Mean structure and diurnal cycle, Atmos. Chem. Phys. 10, 4491–4506, DOI: 10.5194/acp-10-4491-2010.

    Article  Google Scholar 

  15. Sorbjan, Z. (1989), Structure of the Atmospheric Boundary Layer, Prentice Hall, Englewood Cliffs, 317 pp.

    Google Scholar 

  16. Stachlewska, I.S., M. Piądłowski, S. Migacz, A. Szkop, A.J. Zielińska, and P.L. Swaczyna (2012), Ceilometer observations of the boundary layer over Warsaw, Poland, Acta Geophys. 60,5, 1386–1412, DOI: 10.2478/s11600-012-0054-4.

    Article  Google Scholar 

  17. Stull, R.B. (1988), An Introduction to Boundary Layer Meteorology, Kluwer Academic Publ., Dordrecht, 666 pp.

    Book  Google Scholar 

  18. Talianu, C., D. Nicolae, J. Ciuciu, M. Ciobanu, and V. Babin (2006), Planetary boundary layer height detection from LIDAR measurements, J. Optoelectron. Adv. Mat. 8,1, 243–246.

    Google Scholar 

  19. Wang, S., L.W. O’Neill, Q. Jiang, S.P. de Szoeke, X. Hong, H. Jin, W.T. Thompson, and X. Zheng (2011), A regional real-time forecast of marine boundary layers during VOCALS-REx, Atmos. Chem. Phys. 11,2, 421–437, DOI: 10.5194/acp-11-421-2011.

    Article  Google Scholar 

  20. White, J.M., J.F. Bowers, S.R. Hanna, and J.K. Lundquist (2009), Importance of using observations of mixing depths in order to avoid large prediction errors by a transport and dispersion model, J. Atmos. Ocean. Technol. 26,1, 22–32, DOI: 10.1175/2008JTECHA 1134.1.

    Article  Google Scholar 

  21. Wu, W.S. (2005), Background error for NCEP’s GSI analysis in regional mode. In: Proc. Fourth WMO Int. Symp. on Assimilation of Observations in Meteorology and Oceanography, Prague, Czech Republic, 3A.27.

    Google Scholar 

  22. Wyant, M.C., R. Wood, C.S. Bretherton, C.R. Mechoso, J. Bacmeister, M.A. Balmaseda, B. Barrett, F. Codron, P. Earnshaw, J. Fast, C. Hannay, J.W. Kaiser, H. Kitagawa, S.A. Klein, M. Köhler, J. Manganello, H.-L. Pan, F. Sun, S. Wang, and Y. Wang (2010), The PreVOCA experiment: modeling the lower troposphere in the Southeast Pacific, Atmos. Chem. Phys. 10, 4757–4774, DOI: 10.5194/acp-10-4757-2010.

    Article  Google Scholar 

  23. Xie, F., D.L. Wu, C.O. Ao, A.J. Mannucci, and E.R. Kursinski (2012), Advances and limitations of atmospheric boundary layer observations with GPS occultation over southeast Pacific Ocean, Atmos. Chem. Phys. 12, 903–918, DOI: 10.5194/acp-12-903-2012.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Doina Nicolae.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Belegante, L., Nicolae, D., Nemuc, A. et al. Retrieval of the boundary layer height from active and passive remote sensors. Comparison with a NWP model. Acta Geophys. 62, 276–289 (2014). https://doi.org/10.2478/s11600-013-0167-4

Download citation

Key words

  • lidar
  • microwave radiometer
  • WRF
  • boundary layer