Advertisement

Acta Geophysica

, Volume 62, Issue 1, pp 1–11 | Cite as

Numerical support of laboratory experiments: Attenuation and velocity estimations

  • Erik H. Saenger
  • Claudio Madonna
  • Marcel Frehner
  • Bjarne S. G. Almqvist
Research Article

Abstract

We show that numerical support of laboratory experiments can significantly increase the understanding and simplify the interpretation of the obtained laboratory results. First we perform simulations of the Seismic Wave Attenuation Module to measure seismic attenuation of reservoir rocks. Our findings confirm the accuracy of this system. However, precision can be further improved by optimizing the sensor positions. Second, we model wave propagation for an ultrasonic pulse transmission experiment used to determine pressure- and temperature-dependent seismic velocities in the rock. Multiple waves are identified in our computer experiment, including bar waves. The metal jacket that houses the sample assembly needs to be taken into account for a proper estimation of the ultrasonic velocities. This influence is frequency-dependent.

Key words

numerical modelling ultrasonic velocities seismic attenuation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batzle, M., D. Han, and R. Hofmann (2006), Fluid mobility and frequencydependent seismic velocity — Direct measurements, Geophysics 71,1, N1–N9, DOI: 10.1190/1.2159053.CrossRefGoogle Scholar
  2. Burlini, L., L. Arbaret, G. Zeilinger, and J.-P. Burg (2005), High-temperature and pressure seismic properties of a lower crustal prograde shear zone from the Kohistan arc, Pakistan, Geol. Soc. London Spec. Publ. 245, 187–202, DOI: 10.1144/GSL.SP.2005.245.01.09.CrossRefGoogle Scholar
  3. Burlini, L., S. Vinciguerra, G. Di Toro, G. De Natale, P. Meredith, J.-P. Burg (2007), Seismicity preceding volcanic eruptions: New experimental insights, Geology 35,2, 183–186, DOI: 10.1130/G23195A.1.CrossRefGoogle Scholar
  4. Caricchi, L., L. Burlini, and P. Ulmer (2008), Propagation of P- and S-waves in magmas with different crystal contents: Insights into the crystallinity of magmatic reservoirs, J. Volcanol. Geoth. Res. 178,4, 740–750, DOI: 10.1016/j.jvolgeores.2008.09.006.CrossRefGoogle Scholar
  5. Christensen, N.I. (1979), Compressional wave velocities in rocks at high temperatures and pressures, critical thermal gradients, and crustal low-velocity zones, J. Geophys. Res. 84,B12, 6849–6857, DOI: 10.1029/JB084iB12p06849.CrossRefGoogle Scholar
  6. Ferri, F., L. Burlini, B. Cesare, and R. Sassi (2007), Seismic properties of lower crustal xenoliths from El Hoyazo (SE Spain): Experimental evidence up to partial melting, Earth Planet. Sc. Lett. 253,1–2, 239–253, DOI: 10.1016/j.epsl.2006.10.027.CrossRefGoogle Scholar
  7. Jackson, I., and M.S. Paterson (1987), Shear modulus and internal friction of calcite rocks at seismic frequencies: pressure, frequency and grain size dependence, Phys Earth Planet. In. 45,4, 349–367, DOI: 10.1016/0031-9201(87)90042-2.CrossRefGoogle Scholar
  8. Kern, H., S. Gao, Z. Jin, T. Popp, and S. Jin (1999), Petrophysical studies on rocks from the Dabie ultrahigh-pressure (UHP) metamorphic belt, central China: implications for the composition and delamination of the lower crust, Tectonophysics 301,3–4, 191–215, DOI: 10.1016/S0040-1951(98)00268-6.CrossRefGoogle Scholar
  9. Kono, Y., M. Ishikawa, and M. Arima (2004), Discontinuous change in temperature derivative of Vp in lower crustal rocks, Geophys. Res. Lett. 31,22, L22601, DOI: 10.1029/2004GL020964.CrossRefGoogle Scholar
  10. Lakes, R.S. (2009), Viscoelastic Materials, Cambridge University Press, New York, 461 pp.CrossRefGoogle Scholar
  11. Madonna, C., and N. Tisato (2013), A new Seismic Wave Attenuation Module to experimentally measure low-frequency attenuation in extensional mode, Geophys. Prospect. 61,2, 302–314, DOI: 10.1111/1365-2478.12015.CrossRefGoogle Scholar
  12. O’Connell, R.J., and B. Budiansky (1977), Viscoelastic properties of fluid-saturated cracked solids, J. Geophys. Res. 82,36, 5719–5735, DOI: 10.1029/JB082i036p05719.CrossRefGoogle Scholar
  13. Saenger, E.H., N. Gold, and S.A. Shapiro (2000), Modeling the propagation of elastic waves using a modified finite-difference grid, Wave Motion 31,1, 77–92, DOI: 10.1016/S0165-2125(99)00023-2.CrossRefGoogle Scholar
  14. Saenger, E.H., S.A. Shapiro, and Y. Keehm (2005), Seismic effects of viscous Biotcoupling: finite difference simulations on micro-scale, Geophys. Res. Lett. 32,14, L14310, DOI: 10.1029/2005GL023222.CrossRefGoogle Scholar
  15. Saenger, E.H., F. Enzmann, Y. Keehm, and H. Steeb (2011), Digital rock physics: Effect of fluid viscosity on effective elastic properties, J. Appl. Geophys. 74,4, 236–241, DOI: 10.1016/j.jappgeo.2011.06.001.CrossRefGoogle Scholar
  16. Spencer Jr., J.W. (1981), Stress relaxations at low frequencies in fluid saturated rocks: Attenuation and modulus dispersion, J. Geophys. Res. 86,B3, 1803–1812, DOI: 10.1029/JB086iB03p01803.CrossRefGoogle Scholar
  17. Steiner, B., and E.H. Saenger (2012), Comparison of 2D and 3D time-reverse imaging — A numerical case study, Comput. Geosci. 46, 174–182, DOI: 10.1016/j.cageo.2011.12.005.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Erik H. Saenger
    • 1
  • Claudio Madonna
    • 1
  • Marcel Frehner
    • 1
  • Bjarne S. G. Almqvist
    • 1
  1. 1.ETH Zurich Geological InstituteZurichSwitzerland

Personalised recommendations