Skip to main content
Log in

Numerical support of laboratory experiments: Attenuation and velocity estimations

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

We show that numerical support of laboratory experiments can significantly increase the understanding and simplify the interpretation of the obtained laboratory results. First we perform simulations of the Seismic Wave Attenuation Module to measure seismic attenuation of reservoir rocks. Our findings confirm the accuracy of this system. However, precision can be further improved by optimizing the sensor positions. Second, we model wave propagation for an ultrasonic pulse transmission experiment used to determine pressure- and temperature-dependent seismic velocities in the rock. Multiple waves are identified in our computer experiment, including bar waves. The metal jacket that houses the sample assembly needs to be taken into account for a proper estimation of the ultrasonic velocities. This influence is frequency-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batzle, M., D. Han, and R. Hofmann (2006), Fluid mobility and frequencydependent seismic velocity — Direct measurements, Geophysics 71,1, N1–N9, DOI: 10.1190/1.2159053.

    Article  Google Scholar 

  • Burlini, L., L. Arbaret, G. Zeilinger, and J.-P. Burg (2005), High-temperature and pressure seismic properties of a lower crustal prograde shear zone from the Kohistan arc, Pakistan, Geol. Soc. London Spec. Publ. 245, 187–202, DOI: 10.1144/GSL.SP.2005.245.01.09.

    Article  Google Scholar 

  • Burlini, L., S. Vinciguerra, G. Di Toro, G. De Natale, P. Meredith, J.-P. Burg (2007), Seismicity preceding volcanic eruptions: New experimental insights, Geology 35,2, 183–186, DOI: 10.1130/G23195A.1.

    Article  Google Scholar 

  • Caricchi, L., L. Burlini, and P. Ulmer (2008), Propagation of P- and S-waves in magmas with different crystal contents: Insights into the crystallinity of magmatic reservoirs, J. Volcanol. Geoth. Res. 178,4, 740–750, DOI: 10.1016/j.jvolgeores.2008.09.006.

    Article  Google Scholar 

  • Christensen, N.I. (1979), Compressional wave velocities in rocks at high temperatures and pressures, critical thermal gradients, and crustal low-velocity zones, J. Geophys. Res. 84,B12, 6849–6857, DOI: 10.1029/JB084iB12p06849.

    Article  Google Scholar 

  • Ferri, F., L. Burlini, B. Cesare, and R. Sassi (2007), Seismic properties of lower crustal xenoliths from El Hoyazo (SE Spain): Experimental evidence up to partial melting, Earth Planet. Sc. Lett. 253,1–2, 239–253, DOI: 10.1016/j.epsl.2006.10.027.

    Article  Google Scholar 

  • Jackson, I., and M.S. Paterson (1987), Shear modulus and internal friction of calcite rocks at seismic frequencies: pressure, frequency and grain size dependence, Phys Earth Planet. In. 45,4, 349–367, DOI: 10.1016/0031-9201(87)90042-2.

    Article  Google Scholar 

  • Kern, H., S. Gao, Z. Jin, T. Popp, and S. Jin (1999), Petrophysical studies on rocks from the Dabie ultrahigh-pressure (UHP) metamorphic belt, central China: implications for the composition and delamination of the lower crust, Tectonophysics 301,3–4, 191–215, DOI: 10.1016/S0040-1951(98)00268-6.

    Article  Google Scholar 

  • Kono, Y., M. Ishikawa, and M. Arima (2004), Discontinuous change in temperature derivative of Vp in lower crustal rocks, Geophys. Res. Lett. 31,22, L22601, DOI: 10.1029/2004GL020964.

    Article  Google Scholar 

  • Lakes, R.S. (2009), Viscoelastic Materials, Cambridge University Press, New York, 461 pp.

    Book  Google Scholar 

  • Madonna, C., and N. Tisato (2013), A new Seismic Wave Attenuation Module to experimentally measure low-frequency attenuation in extensional mode, Geophys. Prospect. 61,2, 302–314, DOI: 10.1111/1365-2478.12015.

    Article  Google Scholar 

  • O’Connell, R.J., and B. Budiansky (1977), Viscoelastic properties of fluid-saturated cracked solids, J. Geophys. Res. 82,36, 5719–5735, DOI: 10.1029/JB082i036p05719.

    Article  Google Scholar 

  • Saenger, E.H., N. Gold, and S.A. Shapiro (2000), Modeling the propagation of elastic waves using a modified finite-difference grid, Wave Motion 31,1, 77–92, DOI: 10.1016/S0165-2125(99)00023-2.

    Article  Google Scholar 

  • Saenger, E.H., S.A. Shapiro, and Y. Keehm (2005), Seismic effects of viscous Biotcoupling: finite difference simulations on micro-scale, Geophys. Res. Lett. 32,14, L14310, DOI: 10.1029/2005GL023222.

    Article  Google Scholar 

  • Saenger, E.H., F. Enzmann, Y. Keehm, and H. Steeb (2011), Digital rock physics: Effect of fluid viscosity on effective elastic properties, J. Appl. Geophys. 74,4, 236–241, DOI: 10.1016/j.jappgeo.2011.06.001.

    Article  Google Scholar 

  • Spencer Jr., J.W. (1981), Stress relaxations at low frequencies in fluid saturated rocks: Attenuation and modulus dispersion, J. Geophys. Res. 86,B3, 1803–1812, DOI: 10.1029/JB086iB03p01803.

    Article  Google Scholar 

  • Steiner, B., and E.H. Saenger (2012), Comparison of 2D and 3D time-reverse imaging — A numerical case study, Comput. Geosci. 46, 174–182, DOI: 10.1016/j.cageo.2011.12.005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik H. Saenger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saenger, E.H., Madonna, C., Frehner, M. et al. Numerical support of laboratory experiments: Attenuation and velocity estimations. Acta Geophys. 62, 1–11 (2014). https://doi.org/10.2478/s11600-013-0162-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-013-0162-9

Key words

Navigation