Skip to main content

Evaluation of the boundary layer morning transition using the CL-31 ceilometer signals

Abstract

The morning transition of the atmospheric boundary layer from nighttime to daytime conditions was investigated using the Vaisala’s CL-31 ceilometer, located at Magurele, Romania (44.35°N, 26.03°E). Based on the 5-days backward trajectories, we rejected those measurements which were related to the intrusions of long-range transported particles. In the several discussed cases, which are representative for the morning transition in spring and summer seasons over Magurele, the increasing depth of the boundary layer related to the local aerosol load was well discernible. The dynamic change of its depth was estimated with errors using a simple method based on finding the minimum of the first derivative of the ceilometer signal. In the summer, the increase of the boundary layer depth due to the morning transition from the nighttime to daytime conditions starts on average of about 80 min earlier and the growth rate of this depth is 143 ± 6 m/h and about 37% slower than in the spring case.

This is a preview of subscription content, access via your institution.

References

  1. Angevine, W.M., H.K. Baltink, and F.C. Bosveld (2001), Observations of the morning transition of the convective boundary layer, Bound.-Lay. Meteorol. 101,2, 209–227, DOI: 10.1023/A:1019264716195.

    Article  Google Scholar 

  2. Belegante, L., D. Nicolae, A. Nemuc, C. Talianu, and C. Derognat (2014), Retrieval of the boundary layer height from active and passive remote sensors. Comparison with a NWP model, Acta Geophys. 62,2, 276–289, DOI: 10.2478/s11600-013-0167-4 (this issue).

    Article  Google Scholar 

  3. Boers, R., and E.W. Eloranta (1986), Lidar measurements of the atmospheric entrainment zone and the potential temperature jump across the top of the mixed layer, Bound.-Lay. Meteorol. 34,4, 357–375, DOI: 10.1007/BF00120988.

    Article  Google Scholar 

  4. Cohn, S.A., and W.M. Angevine (2000), Boundary layer height and entrainment zone thickness measured by Lidars and wind-profiling radars, J. Appl. Meteor. 39,8, 1233–1247, DOI: 10.1175/1520-0450(2000)039〈1233: BLHAEZ〉2.0.CO;2.

    Article  Google Scholar 

  5. Draxler, R.R., and G.D. Rolph (2012), HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory), NOAA Air Resources Laboratory, Silver Spring, USA, http://ready.arl.noaa.gov/HYSPLIT.php.

    Google Scholar 

  6. Heese, B., H. Flentje, D. Althausen, A. Ansmann, and S. Frey (2010), Ceilometer lidar comparison: backscatter coefficient retrieval and signal-to-noise ratio determination, Atmos. Meas. Tech. 3,6, 1763–1770, DOI: 10.5194/amt-3-1763-2010.

    Article  Google Scholar 

  7. Martucci, G., C. Milroy, and C.D. O’Dowd (2010), Detection of cloud-base height using Jenoptik CHM15K and Vaisala CL31 ceilometers, J. Atmos. Oceanic Technol. 27,2, 305–318, DOI: 10.1175/2009JTECHA1326.1.

    Article  Google Scholar 

  8. Morille, Y., M. Haeffelin, P. Drobinski, and J. Pelon (2007), STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from singlechannel lidar data, J. Atmos. Oceanic Technol. 24,5, 761–775, DOI: 10.1175/JTECH2008.1.

    Article  Google Scholar 

  9. Münkel, C., and R. Roininen (2008), Mixing layer height assessment with a compact lidar ceilometer. In: The 88th Annual Meeting Symposium on Recent Developments in Atmospheric Applications of Radar and Lidar, 20–24 January 2008, New Orleans, USA, Poster session P2.2.

    Google Scholar 

  10. Münkel, C., N. Eresmaa, J. Räsänen, and A. Karppinen (2007), Retrieval of mixing height and dust concentration with lidar ceilometer, Bound.-Lay. Meteorol. 124,1, 117–128, DOI: 10.1007/s10546-006-9103-3.

    Article  Google Scholar 

  11. Nemuc, A., I.S. Stachlewska, J. Vasilescu, A. Gorska, D. Nicolae, and C. Talianu (2014), Optical properties of long-range transported volcanic ash over Romania and Poland during Eyjafjallajökull eruption in 2010, Acta Geophys. 62,2, 350–366, DOI: 10.2478/s11600-013-0180-7 (this issue).

    Article  Google Scholar 

  12. Ritter, C., and R. Neuber (2012), Private communication 20-24.08.2012.

  13. Seidel, D.J., C.O. Ao, and K. Li (2010), Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis, J. Geophys. Res. 115, D16113, DOI: 10.1029/2009JD013680.

    Article  Google Scholar 

  14. Sicard, M., C. Pérez, F. Rocadenbosch, J.M. Baldasano, and D. Garcia-Vizcaino (2006), Mixed-layer depth determination in the Barcelona coastal area from regular lidar measurements: methods, results and limitations, Bound.-Lay. Meteorol. 119,1, 135–157, DOI: 10.1007/s10546-005-9005-9.

    Article  Google Scholar 

  15. Stachlewska, I.S., M. Piądłowski, S. Migacz, A. Szkop, A.J. Zielińska, and P.L. Swaczyna (2012), Ceilometer observations of the boundary layer over Warsaw, Poland, Acta Geophys. 60,5, 1386–1412, DOI: 10.2478/s11600-012-0054-4.

    Article  Google Scholar 

  16. Steyn, D.G., M. Baldi, and R.M. Hoff (1999), The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles, J. Atmos. Oceanic Technol. 16,7, 953–959, DOI: 10.1175/1520-0426 (1999)016〈0953:TDOMLD〉2.0.CO;2.

    Article  Google Scholar 

  17. Tsaknakis, G., A. Papayannis, P. Kokkalis, V. Amiridis, H.D. Kambezidis, R.E. Mamouri, G. Georgoussis, and G. Avdikos (2011), Inter-comparison of lidar and ceilometer retrievals for aerosol and Planetary Boundary Layer profiling over Athens, Greece, Atmos. Meas. Tech. 4,6, 1261–1273, DOI: 10.5194/amt-4-1261-2011.

    Article  Google Scholar 

  18. Ungureanu, I., S. Stefan, and D. Nicolae (2010), Investigation of the cloud cover and Planetary Boundary Layer (PBL) characteristics using ceilometer CL-31, Rom. Rep. Phys. 62,2, 396–404.

    Google Scholar 

  19. Vaisala User’s Guide (2009), Vaisala — services, manuals, http://www.vaisala.com.

    Google Scholar 

  20. Wallace, J.M., and P.V. Hobbs (2006), Atmospheric Science: An introductory Survey, 2nd ed., Elsevier Academic Press, Amsterdam.

    Google Scholar 

  21. Wiegner, M., and A. Geiβ (2012), Aerosol profiling with the JenOptik ceilometer CHM15kx, Atmos. Meas. Tech. 5, 1953–1964, DOI: 10.5194/amt-5-1953-2012.

    Article  Google Scholar 

  22. Wiegner, M., S. Emeis, V. Freudenthaler, B. Heese, W. Junkermann, C. Münkel, K. Schäfer, M. Seefeldner, and S. Vogt (2006), Mixing layer height over Munich, Germany: Variability and comparisons of different methodologies, J. Geophys. Res. 111, D13201, DOI: 10.1029/2005JD006593.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Iwona S. Stachlewska.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sokół, P., Stachlewska, I.S., Ungureanu, I. et al. Evaluation of the boundary layer morning transition using the CL-31 ceilometer signals. Acta Geophys. 62, 367–380 (2014). https://doi.org/10.2478/s11600-013-0158-5

Download citation

Key words

  • boundary layer depth
  • morning transition
  • ceilometer