Acta Geophysica

, Volume 62, Issue 2, pp 367–380 | Cite as

Evaluation of the boundary layer morning transition using the CL-31 ceilometer signals

  • Paulina Sokół
  • Iwona S. StachlewskaEmail author
  • Ioana Ungureanu
  • Sabina Stefan
Research Article


The morning transition of the atmospheric boundary layer from nighttime to daytime conditions was investigated using the Vaisala’s CL-31 ceilometer, located at Magurele, Romania (44.35°N, 26.03°E). Based on the 5-days backward trajectories, we rejected those measurements which were related to the intrusions of long-range transported particles. In the several discussed cases, which are representative for the morning transition in spring and summer seasons over Magurele, the increasing depth of the boundary layer related to the local aerosol load was well discernible. The dynamic change of its depth was estimated with errors using a simple method based on finding the minimum of the first derivative of the ceilometer signal. In the summer, the increase of the boundary layer depth due to the morning transition from the nighttime to daytime conditions starts on average of about 80 min earlier and the growth rate of this depth is 143 ± 6 m/h and about 37% slower than in the spring case.

Key words

boundary layer depth morning transition ceilometer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angevine, W.M., H.K. Baltink, and F.C. Bosveld (2001), Observations of the morning transition of the convective boundary layer, Bound.-Lay. Meteorol. 101,2, 209–227, DOI: 10.1023/A:1019264716195.CrossRefGoogle Scholar
  2. Belegante, L., D. Nicolae, A. Nemuc, C. Talianu, and C. Derognat (2014), Retrieval of the boundary layer height from active and passive remote sensors. Comparison with a NWP model, Acta Geophys. 62,2, 276–289, DOI: 10.2478/s11600-013-0167-4 (this issue).CrossRefGoogle Scholar
  3. Boers, R., and E.W. Eloranta (1986), Lidar measurements of the atmospheric entrainment zone and the potential temperature jump across the top of the mixed layer, Bound.-Lay. Meteorol. 34,4, 357–375, DOI: 10.1007/BF00120988.CrossRefGoogle Scholar
  4. Cohn, S.A., and W.M. Angevine (2000), Boundary layer height and entrainment zone thickness measured by Lidars and wind-profiling radars, J. Appl. Meteor. 39,8, 1233–1247, DOI: 10.1175/1520-0450(2000)039〈1233: BLHAEZ〉2.0.CO;2.CrossRefGoogle Scholar
  5. Draxler, R.R., and G.D. Rolph (2012), HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory), NOAA Air Resources Laboratory, Silver Spring, USA, Scholar
  6. Heese, B., H. Flentje, D. Althausen, A. Ansmann, and S. Frey (2010), Ceilometer lidar comparison: backscatter coefficient retrieval and signal-to-noise ratio determination, Atmos. Meas. Tech. 3,6, 1763–1770, DOI: 10.5194/amt-3-1763-2010.CrossRefGoogle Scholar
  7. Martucci, G., C. Milroy, and C.D. O’Dowd (2010), Detection of cloud-base height using Jenoptik CHM15K and Vaisala CL31 ceilometers, J. Atmos. Oceanic Technol. 27,2, 305–318, DOI: 10.1175/2009JTECHA1326.1.CrossRefGoogle Scholar
  8. Morille, Y., M. Haeffelin, P. Drobinski, and J. Pelon (2007), STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from singlechannel lidar data, J. Atmos. Oceanic Technol. 24,5, 761–775, DOI: 10.1175/JTECH2008.1.CrossRefGoogle Scholar
  9. Münkel, C., and R. Roininen (2008), Mixing layer height assessment with a compact lidar ceilometer. In: The 88th Annual Meeting Symposium on Recent Developments in Atmospheric Applications of Radar and Lidar, 20–24 January 2008, New Orleans, USA, Poster session P2.2.Google Scholar
  10. Münkel, C., N. Eresmaa, J. Räsänen, and A. Karppinen (2007), Retrieval of mixing height and dust concentration with lidar ceilometer, Bound.-Lay. Meteorol. 124,1, 117–128, DOI: 10.1007/s10546-006-9103-3.CrossRefGoogle Scholar
  11. Nemuc, A., I.S. Stachlewska, J. Vasilescu, A. Gorska, D. Nicolae, and C. Talianu (2014), Optical properties of long-range transported volcanic ash over Romania and Poland during Eyjafjallajökull eruption in 2010, Acta Geophys. 62,2, 350–366, DOI: 10.2478/s11600-013-0180-7 (this issue).CrossRefGoogle Scholar
  12. Ritter, C., and R. Neuber (2012), Private communication 20-24.08.2012.Google Scholar
  13. Seidel, D.J., C.O. Ao, and K. Li (2010), Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis, J. Geophys. Res. 115, D16113, DOI: 10.1029/2009JD013680.CrossRefGoogle Scholar
  14. Sicard, M., C. Pérez, F. Rocadenbosch, J.M. Baldasano, and D. Garcia-Vizcaino (2006), Mixed-layer depth determination in the Barcelona coastal area from regular lidar measurements: methods, results and limitations, Bound.-Lay. Meteorol. 119,1, 135–157, DOI: 10.1007/s10546-005-9005-9.CrossRefGoogle Scholar
  15. Stachlewska, I.S., M. Piądłowski, S. Migacz, A. Szkop, A.J. Zielińska, and P.L. Swaczyna (2012), Ceilometer observations of the boundary layer over Warsaw, Poland, Acta Geophys. 60,5, 1386–1412, DOI: 10.2478/s11600-012-0054-4.CrossRefGoogle Scholar
  16. Steyn, D.G., M. Baldi, and R.M. Hoff (1999), The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles, J. Atmos. Oceanic Technol. 16,7, 953–959, DOI: 10.1175/1520-0426 (1999)016〈0953:TDOMLD〉2.0.CO;2.CrossRefGoogle Scholar
  17. Tsaknakis, G., A. Papayannis, P. Kokkalis, V. Amiridis, H.D. Kambezidis, R.E. Mamouri, G. Georgoussis, and G. Avdikos (2011), Inter-comparison of lidar and ceilometer retrievals for aerosol and Planetary Boundary Layer profiling over Athens, Greece, Atmos. Meas. Tech. 4,6, 1261–1273, DOI: 10.5194/amt-4-1261-2011.CrossRefGoogle Scholar
  18. Ungureanu, I., S. Stefan, and D. Nicolae (2010), Investigation of the cloud cover and Planetary Boundary Layer (PBL) characteristics using ceilometer CL-31, Rom. Rep. Phys. 62,2, 396–404.Google Scholar
  19. Vaisala User’s Guide (2009), Vaisala — services, manuals, Scholar
  20. Wallace, J.M., and P.V. Hobbs (2006), Atmospheric Science: An introductory Survey, 2nd ed., Elsevier Academic Press, Amsterdam.Google Scholar
  21. Wiegner, M., and A. Geiβ (2012), Aerosol profiling with the JenOptik ceilometer CHM15kx, Atmos. Meas. Tech. 5, 1953–1964, DOI: 10.5194/amt-5-1953-2012.CrossRefGoogle Scholar
  22. Wiegner, M., S. Emeis, V. Freudenthaler, B. Heese, W. Junkermann, C. Münkel, K. Schäfer, M. Seefeldner, and S. Vogt (2006), Mixing layer height over Munich, Germany: Variability and comparisons of different methodologies, J. Geophys. Res. 111, D13201, DOI: 10.1029/2005JD006593.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Paulina Sokół
    • 1
  • Iwona S. Stachlewska
    • 1
    Email author
  • Ioana Ungureanu
    • 2
  • Sabina Stefan
    • 2
  1. 1.Institute of Geophysics, Faculty of PhysicsUniversity of WarsawWarsawPoland
  2. 2.Faculty of PhysicsUniversity of BucharestBucharestRomania

Personalised recommendations