Skip to main content

On the choice of calibration periods and objective functions: A practical guide to model parameter identification

Abstract

Despite the development of new measuring techniques, monitoring systems and advances in computer technology, rainfall-flow modelling is still a challenge. The reasons are multiple and fairly well known. They include the distributed, heterogeneous nature of the environmental variables affecting flow from the catchment. These are precipitation, evapotranspiration and in some seasons and catchments in Poland, snow melt also. This paper presents a review of work done on the calibration and validation of rainfall-runoff modelling, with a focus on the conceptual HBV model. We give a synthesis of the problems and propose a practical guide to the calibration and validation of rainfall-runoff models.

This is a preview of subscription content, access via your institution.

References

  1. Abbott, M.B., J.C. Bathurst, J.A. Cunge, P.E. O’Connell, and J. Rasmussen (1986a), An introduction to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”. 1: History and philosophy of a physicallybased, distributed modelling system, J. Hydrol. 87,1–2, 45–59, DOI: 10.1016/0022-1694(86)90114-9.

    Article  Google Scholar 

  2. Abbott, M.B., J.C. Bathurst, J.A. Cunge, P.E. O’Connell, and J. Rasmussen (1986b), An introduction to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”. 2: Structure of a physically-based, distributed modelling system, J. Hydrol. 87,1–2, 61–77, DOI: 10.1016/0022-1694(86)90115-0.

    Article  Google Scholar 

  3. Abebe, N.A., F.L. Ogden, and N.R. Pradhan (2010), Sensitivity and uncertainty analysis of the conceptual HBV rainfall-runoff model: Implications for parameter estimation, J. Hydrol. 389,3–4, 301–310, DOI: 10.1016/j.jhydrol.2010.06.007.

    Article  Google Scholar 

  4. Akhtar, M., N. Ahmad, and M.J. Booij (2009), Use of regional climate model simulations as input for hydrological models for the Hindukush-Karakorum-Himalaya region, Hydrol. Earth Syst. Sci. 13,7, 1075–1089, DOI: 10.5194/hess-13-1075-2009.

    Article  Google Scholar 

  5. Andréasson, J., S. Bergström, B. Carlsson, L.P. Graham, and G. Lindström (2004), Hydrological change — climate change impact simulations for Sweden, Ambio 33,4, 228–234, DOI: 10.1579/0044-7447-33.4.228.

    Google Scholar 

  6. Arnold, J.G., R. Srinivasan, R.S. Muttiah, and J.R. Williams (1998), Large area hydrologic modeling and assessment. Part I: Model development, J. Am. Water Resour. Assoc. 34,1, 73–89, DOI: 10.1111/j.1752-1688.1998.tb05961.x.

    Article  Google Scholar 

  7. Aronica, G., B. Hankin, and K. Beven (1998), Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data, Adv. Water Resour. 22,4, 349–365, DOI: 10.1016/S0309-1708(98)00017-7.

    Article  Google Scholar 

  8. Bergström, S. (1976), Development and application of a conceptual runoff model for Scandinavian catchments, RH07, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden.

    Google Scholar 

  9. Bergström, S., B. Carlsson, M. Gardelin, G. Lindström, A. Pettersson, and M. Rummukainen (2001), Climate change impacts on runoff in Sweden — assessments by global climate models, dynamical downscaling and hydrological modelling, Clim. Res. 16,2, 101–112, DOI: 10.3354/cr016101.

    Article  Google Scholar 

  10. Beven, K. (2006), A manifesto for the equifinality thesis, J. Hydrol. 320,1–2, 18–36, DOI: 10.1016/j.jhydrol.2005.07.007.

    Article  Google Scholar 

  11. Beven, K., and A. Binley (1992), The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Process. 6,3, 279–298, DOI: 10.1002/hyp.3360060305.

    Article  Google Scholar 

  12. Blasone, R.S., J.A. Vrugt, H. Madsen, D. Rosbjerg, B.A. Robinson, and G.A. Zyvoloski (2008), Generalized likelihood uncertainty estimation(GLUE) using adaptive Markov Chain Monte Carlo sampling, Adv. Water Resour. 31,4, 630–648, DOI: 10.1016/j.advwatres.2007.12.003.

    Article  Google Scholar 

  13. Booij, M.J., and M.S. Krol (2010), Balance between calibration objectives in a conceptual hydrological model, Hydrol. Sci. J. 55,6, 1017–1032, DOI: 10.1080/02626667.2010.505892.

    Article  Google Scholar 

  14. Box, G.E.P., and G.C. Tiao (1992), Bayesian Inference in Statistical Analysis, John Wiley and Sons Inc., New York.

    Book  Google Scholar 

  15. Boyle, D. (2000), Multicriteria calibration of hydrological models, Ph.D. Thesis, University of Arizona, Tucson.

    Google Scholar 

  16. Boyle, D.P., H.V. Gupta, S. Sorooshian, V. Koren, Z. Zhang, and M. Smith (2001), Toward improved streamflow forecasts: value of semidistributed modeling, Water Resour. Res. 37,11, 2749–2759, DOI: 10.1029/2000WR000207.

    Article  Google Scholar 

  17. Bruen, M., and J. Yang (2006), Combined hydraulic and black-box models for flood forecasting in urban drainage systems, J. Hydrol. Eng. 11,6, 589–596, DOI: 10.1061/(ASCE)1084-0699(2006)11:6(589).

    Article  Google Scholar 

  18. Das, S., A. Abraham, U.K. Chakraborty, and A. Konar (2009), Differential evolution using a neighbourhood-based mutation operator, IEEE Trans. Evolut. Comput. 13,3, 526–553, DOI: 10.1109/TEVC.2008.2009457.

    Article  Google Scholar 

  19. Deckers, D.L.E.H., M.J. Booij, T.H.M. Rientjes, and M.S. Krol (2010), Catchment variability and parameter estimation in multi-objective regionalisation of a rainfall-runoff model, Water Resour. Manag. 24,14, 3961–3985, DOI: 10.1007/s11269-010-9642-8.

    Article  Google Scholar 

  20. Doherty, J. (2004), PEST: Model-independent parameter estimation. User’s manual. 5th ed., Watermark Numerical Computing, Brisbane, Australia.

    Google Scholar 

  21. Efstratiadis, A., and D. Koutsoyiannis (2010), One decade of multi-objective calibration approaches in hydrological modelling: a review, Hydrolog. Sci. J. 55,1, 58–78, DOI: 10.1080/02626660903526292.

    Article  Google Scholar 

  22. Fenicia, F., D.P. Solomatine, H.H.G. Savenije, and P. Matgen (2007), Soft combination of local models in a multi-objective framework, Hydrol. Earth Syst. Sci. 11,6, 1797–1809, DOI: 10.5194/hess-11-1797-2007.

    Article  Google Scholar 

  23. Gassman, P.W., M.R. Reyes, C.H. Green, and J.G. Arnold (2007), The soil and water assessment tool: historical development, applications, and future research directions, Trans. Am. Soc. Agricult. Biol. Eng. 50,4, 1211–1250.

    Google Scholar 

  24. Graham, L.P., J. Andréasson, and B. Carlsson (2007), Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods — a case study on the Lule River basin, Climatic Change 81,1, Suppl., 293–307, DOI: 10.1007/s10584-006-9215-2.

    Article  Google Scholar 

  25. Gupta, H.V., S. Sorooshian, and P.O. Yapo (1998), Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information, Water Resour. Res. 34,4, 751–763, DOI: 10.1029/97WR03495.

    Article  Google Scholar 

  26. Gupta, H.V., H. Kling, K.K. Yilmaz, and G.F. Martinez (2009), Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol. 377,1–2, 80–91, DOI: 10.1016/j.jhydrol.2009.08.003.

    Article  Google Scholar 

  27. Hastie, T.J., and R.J. Tibshirani (1990), Generalised Additive Models, Chapman and Hall, New York, 335 pp.

    Google Scholar 

  28. Kavetski, D., F. Fenicia, and M.P. Clark (2011), Impact of temporal data resolution on parameter inference and model identification in conceptual hydrological modeling: insights from an experimental catchment, Water Resour. Res. 47,5, W05501, DOI: 10.1029/2010WR009525.

    Article  Google Scholar 

  29. Lawrence, D., and I. Haddeland (2011), Uncertainty in hydrological modelling of climate change impacts in four Norwegian catchments, Hydrol. Res. 42,6, 457–471, DOI: 10.2166/nh.2011.010.

    Article  Google Scholar 

  30. Legates, D.R., and G.J. McCabe Jr. (1999), Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation, Water Resour. Res. 35,1, 233–241, DOI: 10.1029/1998WR900018.

    Article  Google Scholar 

  31. Lidén, R., and J. Harlin (2000), Analysis of conceptual rainfall-runoff modeling performance in different climates, J. Hydrol. 238,3–4, 231–247, DOI: 10.1016/S0022-1694(00)00330-9.

    Article  Google Scholar 

  32. Lindström, G. (1997), A simple automatic calibration routine for the HBV model, Nord. Hydrol. 28,3, 153–168, DOI: 10.2166/nh.1997.009.

    Google Scholar 

  33. Lindström, G., B. Johansson, M. Persson, M. Gardelin, and S. Bergström (1997), Development and test of the distributed HBV-96 hydrological model, J Hydrol. 201,1–4, 272–288, DOI: 10.1016/S0022-1694(97)00041-3.

    Article  Google Scholar 

  34. Luks, B., M. Osuch, and R.J. Romanowicz (2011), The relationship between snowpack dynamics and NAO/AO indices in SW Spitsbergen, Phys. Chem. Earth 36,13, 646–654, DOI: 10.1016/j.pce.2011.06.004.

    Article  Google Scholar 

  35. Nash, J.E., and J.V. Sutcliffe (1970), River flow forecasting through conceptual models. Part I — A discussion of principles, J. Hydrol. 10,3, 282–290, DOI: 10.1016/0022-1694(70)90255-6.

    Article  Google Scholar 

  36. Piotrowski, A.P., and J.J. Napiórkowski (2012), Product-Units neural networks for catchment runoff forecasting, Adv. Water Resour. 49, 97–113, DOI: 10.1016/j.advwatres.2012.05.016.

    Article  Google Scholar 

  37. Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery (2002), Numerical Recipes in C++, Cambridge University Press, Cambridge.

    Google Scholar 

  38. Pushpalatha, R., C. Perrin, N. Le Moine, and V. Andréassian (2012), A review of efficiency criteria suitable for evaluating low-flow simulations, J. Hydrol. 420–421, 171–182, DOI: 10.1016/j.jhydrol.2011.11.055.

    Article  Google Scholar 

  39. Ratto, M., P.C. Young, R. Romanowicz, F. Pappenberger, A. Saltelli, and A. Pagano (2007), Uncertainty, sensitivity analysis and the role of data based mechanistic modeling in hydrology, Hydrol. Earth Syst. Sci. 11,4, 1249–1266, DOI: 10.5194/hess-11-1249-2007.

    Article  Google Scholar 

  40. Rientjes, T.H.M., A.T. Haile, E. Kebede, C.M.M. Mannaerts, E. Habib, and T.S. Steenhuis (2011), Changes in land cover, rainfall and stream flow in Upper Gilgel Abbay catchment, Blue Nile basin — Ethiopia, Hydrol. Earth Syst. Sci. 15,6, 1979–1989, DOI: 10.5194/hess-15-1979-2011.

    Article  Google Scholar 

  41. Romanowicz, R.J., and K.J. Beven (2006), Comments on generalised likelihood uncertainty estimation, Reliab. Eng. Syst. Safe. 91,10–11, 1315–1321, DOI: 10.1016/j.ress.2005.11.030.

    Article  Google Scholar 

  42. Romanowicz, R.J., and R. Macdonald (2005), Modelling uncertainty and variability in environmental systems, Acta Geophys. Pol. 53,4, 401–417.

    Google Scholar 

  43. Romanowicz, R.J., K.J. Beven, and J. Tawn (1996), Bayesian calibration of flood inundation models. In: M.G. Anderson, D.E. Walling, and P.D. Bates (eds.), Floodplain Processes, John Wiley and Sons Inc., Chichester, 333–360.

    Google Scholar 

  44. Romanowicz, R.J., A. Kiczko, and J.J. Napiórkowski (2010), Stochastic transfer function model applied to combined reservoir management and flow routing, Hydrol. Sci. J. 55,1, 27–40, DOI: 10.1080/02626660903526029.

    Article  Google Scholar 

  45. Romanowicz, R.J., A. Kulasová, J. Ředinová, and S. Blazková (2012), Influence of afforestation on water regime in Jizera catchments, Czech Republic, Acta Geophys. 60,4, 1120–1142, DOI: 10.2478/s11600-012-0046-4.

    Article  Google Scholar 

  46. Smith, P., K.J. Beven, and J.A. Tawn (2008), Informal likelihood measures in model assessment: Theoretic development and investigation, Adv. Water Resour. 31,8, 1087–1100, DOI: 10.1016/j.advwatres.2008.04.012.

    Article  Google Scholar 

  47. Sorooshian, S., and J.A. Dracup (1980), Stochastic parameter estimation procedures for hydrologie rainfall-runoff models: Correlated and heteroscedastic error cases, Water Resour. Res. 16,2, 430–442, DOI: 10.1029/ WR016i002p00430.

    Article  Google Scholar 

  48. Sorooshian, S., and V.K. Gupta (1983), Automatic calibration of conceptual rainfall-runoff models: The question of parameter observability and uniqueness, Water Resour. Res. 19,1, 260–268, DOI: 10.1029/WR019i001p00260.

    Article  Google Scholar 

  49. Tarantola, A. (1987), Inverse Problems Theory. Methods for Data Fitting and Model Parameter Estimation, Elsevier, Amsterdam.

    Google Scholar 

  50. Van den Tillaart, S.P.M., M.J. Booij, and M.S. Krol (2013), Impact of uncertainties in discharge determination on the parameter estimation and performance of a hydrological model, Hydrol. Res. 44,3, 454–466, DOI: 10.2166/nh.2012.147.

    Article  Google Scholar 

  51. Vrugt, J.A., H.V. Gupta, W. Bouten, and S. Sorooshian (2003), A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters, Water Resour Res. 39,8, 1201, DOI: 10.1029/2002WR001642.

    Google Scholar 

  52. Wagener, T., N. McIntyre, M.J. Lees, H.S. Wheater, and H.V. Gupta (2003), Towards reduced uncertainty in conceptual rainfall-runoff modelling: dynamic identifiability analysis, Hydrol. Process. 17,2, 455–476, DOI: 10.1002/hyp.1135.

    Article  Google Scholar 

  53. Wilby, R.L. (2005), Uncertainty in water resource model parameters used for climate change impact assessment, Hydrol. Process. 19,16, 3201–3219, DOI: 10.1002/hyp.5819.

    Article  Google Scholar 

  54. Young, P. (2003), Top-down and data-based mechanistic modelling of rainfall-flow dynamics at the catchment scale, Hydrol. Process. 17,11, 2195–2217, DOI: 10.1002/hyp.1328.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Renata J. Romanowicz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Romanowicz, R.J., Osuch, M. & Grabowiecka, M. On the choice of calibration periods and objective functions: A practical guide to model parameter identification. Acta Geophys. 61, 1477–1503 (2013). https://doi.org/10.2478/s11600-013-0157-6

Download citation

Key words

  • rainfall-runoff model
  • HBV
  • calibration
  • objective function
  • Wieprz catchment