Skip to main content

Models of the Earth’s crust from controlled-source seismology — Where we stand and where we go?

Abstract

Controlled-source seismology (CSS) is the primary source of information regarding the fine structure of the lithosphere. The aim of this paper is to provide an overview of the methods that are commonly used to derive Earth models from CSS data with the focus on the wide-angle reflection/refraction method. Some outlook on the future of the CSS is presented with the special emphasis on the full-wavefield based methods like full-waveform inversion, which brings high level of objectivity into modeling, as well as significantly increases spatial resolution. It is stressed that the researchers should be aware of the limitations of how the elastic parameters transcribe into the actual rock properties which should stimulate them to go beyond the simple P-wave modeling and to build multiparameter Earth models based either on the seismic data or constrained by additional geophysical fields in order to derive sound geological interpretation of their models.

This is a preview of subscription content, access via your institution.

References

  1. Agudelo, W., A. Ribodetti, J.-Y. Collot, and S. Operto (2009), Joint inversion of multichannel seismic reflection and wide-angle seismic data: Improved imaging and refined velocity model of the crustal structure of the north Ecuador — south Colombia convergent margin, J. Geophys Res. 114,B2, B02306, DOI: 10.1029/2008JB005690.

    Article  Google Scholar 

  2. Aki, K., and P.G. Richards (1980), Quantitative Seismology, Theory and Methods, W.H. Freeman & Co., San Francisco.

    Google Scholar 

  3. Bleibinhaus, F., and H. Gebrande (2006), Crustal structure of the Eastern Alps along the TRANSALP profile from wide-angle seismic tomography, Tectonophysics 414,1–4, 51–69, DOI: 10.1016/j.tecto.2005.10.028.

    Article  Google Scholar 

  4. Bleibinhaus, F., J.A. Hole, T. Ryberg, and G.S. Fuis (2007), Structure of the California Coast Ranges and San Andreas Fault at SAFOD from seismic waveform inversion and reflection imaging, J. Geophys. Res. 112,B6, B06315, DOI: 10.1029/2006JB004611.

    Article  Google Scholar 

  5. Brenders, A.J., and R.G. Pratt (2007a), Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model, Geophys. J. Int. 168,1, 133–151, DOI: 10.1111/j.1365-246X.2006.03156.x.

    Article  Google Scholar 

  6. Brenders, A.J., and R.G. Pratt (2007b), Efficient waveform tomography for lithospheric imaging: implications for realistic, two-dimensional acquisition geometries and low-frequency data, Geophys. J. Int. 168,1, 152–170, DOI: 10.1111/j.1365-246X.2006.03096.x.

    Article  Google Scholar 

  7. Brossier, R., S. Operto, and J. Virieux (2009), Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion, Geophysics 74,6, WCC105–WCC118, DOI: 10.1190/1.3215771.

    Article  Google Scholar 

  8. Brown, L.D., K. Irie, and D. Quiros (2010), Deep seismic profiling with ambient noise. In: D.M. Finlayson (ed.), 14th Int. Symp. on Deep Seismic Profiling of the Continents and their Margins: Program and Abstracts, Geoscience, Australia, record 2010/24.

    Google Scholar 

  9. Carbonell, R., D. Lecerf, M. Itzin, J. Gallart, and D. Brown (1998), Mapping the Moho beneath the Southern Urals with wide-angle reflections, Geophys. Res. Lett. 25,24, 4229–4232, DOI: 10.1029/1998GL900107.

    Article  Google Scholar 

  10. Christensen, N.I. (1996), Poisson’s ratio and crustal seismology, J. Geophys. Res. 101,B2, 3139–3156, DOI: 10.1029/95JB03446.

    Article  Google Scholar 

  11. Christensen, N.I., and W.D. Mooney (1995), Seismic velocity structure and composition of the continental crust: A global view, J. Geophys. Res. 100,B6, 9761–9788, DOI: 10.1029/95JB00259.

    Article  Google Scholar 

  12. Clayton, R.W., and G.A. McMechan (1981), Inversion of refraction data by wave field continuation, Geophysics 46,6, 860–868, DOI: 10.1190/1.1441224.

    Article  Google Scholar 

  13. Červený, V. (2001), Seismic Ray Theory, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  14. Červený, V., and I. Pšenčík (1983), Program SEIS83. Numerical modelling of seismic wave fields in 2-D laterally varying layered structures by the ray method (software package), Charles University, Prague.

    Google Scholar 

  15. Fuchs, K., and G. Müller (1971), Computation of synthetic seismograms with the reflectivity method and comparison with observations, Geophys. J. Roy. Astr. Soc. 23,4, 417–433, DOI: 10.1111/j.1365-246X.1971.tb01834.x.

    Article  Google Scholar 

  16. Gao, F., A. Levander, R.G. Pratt, C.A. Zelt, and G.-L. Fradelizio (2007), Waveform tomography at a groundwater contamination site: surface reflection data, Geophysics 72,5, G45–G55, DOI: 10.1190/1.2752744.

    Article  Google Scholar 

  17. Gautier, S., G. Nolet, and J. Virieux (2008), Finite-frequency tomography in a crustal environment: Application to the western part of the Gulf of Corinth, Geophys. Prospect. 56,4, 493–503, DOI: 10.1111/j.1365-2478.2007.00683.x.

    Article  Google Scholar 

  18. Gélis, C., J. Virieux, and G. Grandjean (2007), Two-dimensional elastic full waveform inversion using Born and Rytov formulations in the frequency domain, Geophys. J. Int. 168,2, 605–633, DOI: 10.1111/j.1365-246X.2006.03135.x.

    Article  Google Scholar 

  19. Gorman, A.R. (2002), Ray-theoretical seismic traveltime inversion: modifications for a two-dimensional radially parametrized Earth, Geophys J. Int. 151,2, 511–516, DOI: 10.1046/j.1365-246X.2002.01778.x.

    Article  Google Scholar 

  20. Grad, M., S.L. Jensen, G.R. Keller, A. Guterch, H. Thybo, T. Janik, T. Tiira, J. Yliniemi, U. Luosto, G. Motuza, V. Nasedkin, W. Czuba, E. Gaczyński, P. Środa, K.C. Miller, M. Wilde-Piórko, K. Komminaho, J. Jacyna, and L. Korabliova (2003), Crustal structure of the Trans-European suture zone region along POLONAISE′97 seismic profile P4, J. Geophys. Res. 108,B11, 2541, DOI: 10.1029/2003JB002426.

    Article  Google Scholar 

  21. Hobro, J.W.D., S.C. Singh, and T.A. Minshull (2003), Three-dimensional tomographic inversion of combined reflection and refraction seismic traveltime data, Geophys. J. Int. 152,1, 79–93, DOI: 10.1046/j.1365-246X.2003.01822.x.

    Article  Google Scholar 

  22. Holbrook, W.S., E.C. Reiter, G.M. Purdy, and M.N. Toksöz (1992), Image of the Moho across the continent-ocean transition, U.S. east coast, Geology 20,3, 203–206, DOI: 10.1130/0091-7613 (1992)020〈0203:IOTMAT〉2.3.CO;2.

    Article  Google Scholar 

  23. Hole, J.A. (1992), Nonlinear high-resolution three-dimensional seismic travel time tomography, J. Geophys. Res. 97,B5, 6553–6562, DOI: 10.1029/92JB00235.

    Article  Google Scholar 

  24. Jaiswal, P., C.A. Zelt, A.W. Bally, and R. Dasgupta (2008), 2-D traveltime and waveform inversion for improved seismic imaging: Naga Thrust and Fold Belt, India, Geophys. J. Int. 173,2, 642–658, DOI: 10.1111/j.1365-246X.2007.03691.x.

    Article  Google Scholar 

  25. Jensen, S.L., H. Thybo, and POLONAISE′97 Working Group (2002), Moho topography and lower crustal wide-angle reflectivity around the TESZ in southern Scandinavia and northeastern Europe, Tectonophysics 360,1–4, 187–213, DOI: 10.1016/S0040-1951 (02)00354-2.

    Article  Google Scholar 

  26. Jones, K.A., M.R. Warner, R.P.L. Morgan, J.V. Morgan, P.J. Barton, and C.E. Price (1996), Coincident normal-incidence and wide-angle reflections from the Moho: evidence for crustal seismic anisotropy, Tectonophysics 264,1–4, 205–217, DOI: 10.1016/S0040-1951(96)00127-8.

    Article  Google Scholar 

  27. Kamei, R., R.G. Pratt, and T. Tsuji (2012), Waveform tomography imaging of a megasplay fault system in the seismogenic Nankai subduction zone, Earth Planet. Sci. Lett. 317–318, 343–353, DOI: 10.1016/j.epsl.2011.10.042.

    Article  Google Scholar 

  28. Korenaga, J., W.S. Holbrook, G.M. Kent, P.B. Kelemen, R.S. Detrick, H.-C. Larsen, J.R. Hopper, and T. Dahl-Jensen (2000), Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography, J. Geophys. Res. 105,B9, 21591–21614, DOI: 10.1029/2000JB900188.

    Article  Google Scholar 

  29. Kozlovskaya, E., T. Janik, J. Yliniemi, G. Karatayev, and M. Grad (2004), Densityvelocity relationship in the upper lithosphere obtained from P- and S-wave velocity models along the EUROBRIDGE′97 seismic profile and gravity data, Acta Geophys. Pol. 52,4, 397–424.

    Google Scholar 

  30. Levander, A.R., and K. Holliger (1992), Small-scale heterogeneity and large-scale velocity structure of the continental crust, J. Geophys. Res. 97,B6, 8797–8804, DOI: 10.1029/92JB00659.

    Article  Google Scholar 

  31. Levander, A., C.A. Zelt, and W.W. Symes (2007), Crust and lithospheric structure - active source studies of crust and lithospheric structure. In: Treatise on Geophysics. Vol. 1: Seismology and the Structure of the Earth, Elsevier, Amsterdam, 247–288, DOI: 10.1016/B978-044452748-6.00014-6.

    Chapter  Google Scholar 

  32. Majdański, M., M. Grad, A. Guterch, and SUDETES 2003 Working Group 1 (2006), 2-D seismic tomographic and ray tracing modelling of the crustal structure across the Sudetes Mountains basing on SUDETES 2003 experiment data, Tectonophysics 413,3–4, 249–269, DOI: 10.1016/j.tecto.2005.10.042.

    Article  Google Scholar 

  33. Malinowski, M. (2005), Analysis of short-period Rayleigh waves recorded in the Bohemian Massif area during CELEBRATION 2000 experiment, Stud. Geophys. Geod. 49,4, 485–500, DOI: 10.1007/s11200-005-0023-3.

    Article  Google Scholar 

  34. Malinowski, M. (2009), Structure of the crust/mantle transition beneath the Variscan foreland in SW Poland from coincident wide-angle and near-vertical reflection data, Tectonophysics 471,3–4, 260–271, DOI: 10.1016/j.tecto.2009.02.025.

    Article  Google Scholar 

  35. Malinowski, M., and S. Operto (2008), Quantitative imaging of the Permo-Mesozoic complex and its basement by frequency domain waveform tomography of wide-aperture seismic data from the Polish Basin, Geophys. Prospect. 56,6, 805–825, DOI: 10.1111/j.1365-2478.2007.00680.x.

    Article  Google Scholar 

  36. Malinowski, M., A. Żelaźniewicz, M. Grad, A. Guterch, T. Janik, and CELEBRATION Working Group (2005), Seismic and geological structure of the crust in the transition from Baltica to Palaeozoic Europe in SE Poland — CELEBRATION 2000 experiment, profile CEL02, Tectono-physics 401,1–2, 55–77, DOI: 10.1016/j.tecto.2005.03.011.

    Article  Google Scholar 

  37. Malinowski, M., M. Grad, A. Guterch, and CELEBRATION Working Group (2008), Three-dimensional seismic modelling of the crustal structure between East European Craton and the Carpathians in SE Poland based on CELEBRATION 2000 data, Geophys. J. Int. 173,2, 546–565, DOI: 10.1111/j.1365-246X.2008.03742.x.

    Article  Google Scholar 

  38. Malinowski, M., P. Środa, M. Grad, and A. Guterch (2009), Testing robust inversion strategies for three-dimensional Moho topography based on CELEBRATION 2000 data, Geophys. J. Int. 179,2, 1093–1104, DOI: 10.1111/j.1365-246X.2009.04323.x.

    Article  Google Scholar 

  39. Malinowski, M., S. Operto, and A. Ribodetti (2011), High-resolution seismic attenuation imaging from wide-aperture onshore data by visco-acoustic frequency-domain full-waveform inversion, Geophys. J. Int. 186,3, 1179–1204, DOI: 10.1111/j.1365-246X.2011.05098.x.

    Article  Google Scholar 

  40. Menke, W. (2005), Case studies of seismic tomography and earthquake location in a regional context. In: A. Levander and G. Nolet (eds.), Seismic Earth: Array Analysis of Broadband Seismograms, Geophysical Monograph Series, American Geophysical Union, 7–36, DOI: 10.1029/157GM02.

    Chapter  Google Scholar 

  41. Mereu, R.F. (2000), The complexity of the crust and Moho under the southeastern Superior and Grenville provinces of the Canadian Shield from seismic refraction — wide-angle reflection data, Can. J. Earth Sci. 37,2–3, 439–458, DOI: 10.1139/e99-122.

    Article  Google Scholar 

  42. Milkereit, B., D. Epili, A.G. Green, R.F. Mereu, and P. Morel-à-l’Huissier (1990), Migration of wide-angle seismic reflection data from the Grenville Front in Lake Huron, J. Geophys. Res. 95,B7, 10987–10998, DOI: 10.1029/JB095iB07p10987.

    Article  Google Scholar 

  43. Nita, B., L. Dobrzhinetskaya, P. Maguire, and E. Perchuć (2012), Age-differentiated subduction regime: An explanation of regional scale upper mantle differences beneath the Alps and the Variscides of Central Europe, Phys. Earth Planet. In. 206–207, 1–15, DOI: 10.1016/j.pepi.2012.06.001.

    Article  Google Scholar 

  44. Nowack, R.L., and M.P. Matheney (1997), Inversion of seismic attributes for velocity and attenuation structure, Geophys. J. Int. 128,3, 689–700, DOI: 10.1111/j.1365-246X.1997.tb05329.x.

    Article  Google Scholar 

  45. Operto, S., J. Virieux, J.-X. Dessa, and G. Pascal (2006), Crustal seismic imaging from multifold ocean bottom seismometer data by frequency domain full waveform tomography: Application to the eastern Nankai trough, J. Geophys. Res. 111,B9, DOI: 10.1029/2005JB003835.

    Google Scholar 

  46. Oueity, J., and R.M. Clowes (2010), Nature of the Moho transition in NW Canada from combined near-vertical and wide-angle seismic-reflection studies, Lithosphere 2,5, 377–396, DOI: 10.1130/L103.1.

    Article  Google Scholar 

  47. Pilipenko, V.N., N.I. Pavlenkova, and U. Luosto (1999), Wide-angle reflection migration technique with an example from the POLAR profile (northern Scandinavia), Tectonophysics 308,4, 445–457, DOI: 10.1016/S0040-1951(99)00144-4.

    Article  Google Scholar 

  48. Prodehl, C., and W. Mooney (2012), Exploring the Earth’s Crust: History and Results of Controlled-Source Seismology, Memoir 208, Geological Society of America Inc., Boulder.

    Google Scholar 

  49. Ravaut, C., S. Operto, L. Improta, J. Virieux, A. Herrero, and P. dell’Aversana (2004), Multiscale imaging of complex structures from multifold wideaperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt, Geophys. J. Int. 159,3, 1032–1056, DOI: 10.1111/j.1365-246X.2004.02442.x.

    Article  Google Scholar 

  50. Rawlinson, N., and M. Sambridge (2003), Seismic traveltime tomography of the crust and lithosphere, Adv. Geophys. 46, 81–198, DOI: 10.1016/S0065-2687(03)46002-0.

    Article  Google Scholar 

  51. Roberts, A.W., R.W. Hobbs, M. Goldstein, M. Moorkamp, M. Jegen, and B. Heincke (2012), Crustal constraint through complete model space screening for diverse geophysical datasets facilitated by emulation, Tectonophysics 572–573, 47–63, DOI: 10.1016/j.tecto.2012.03.006.

    Article  Google Scholar 

  52. Shipp, R.M., and S.C. Singh (2002), Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data, Geophys. J. Int. 151,2, 325–344, DOI: 10.1046/j.1365-246X.2002.01645.x.

    Article  Google Scholar 

  53. Środa, P. (2006) Seismic anisotropy of the upper crust in southeastern Poland — effect of the compressional deformation at the EEC margin: Results of CELEBRATION 2000 seismic data inversion, Geophys. Res. Lett. 33,22, L22302, DOI: 10.1029/2006GL027701.

    Article  Google Scholar 

  54. Środa, P. (2010), The bright spot in the West Carpathian upper mantle: a trace of the Tertiary plate collision and a caveat for a seismologist, Geophys. J. Int. 182,1, 1–10, DOI: 10.1111/j.1365-246X.2010.04595.x.

    Google Scholar 

  55. Środa, P., W. Czuba, M. Grad, A. Guterch, A.K. Tokarski, T. Janik, M. Rauch, G.R. Keller, E. Hegedüs, J. Vozár, and CELEBRATION Working Group (2006), Crustal and upper mantle structure of the Western Carpathians from CELEBRATION 2000 profiles CEL01 and CEL04: seismic models and geological implications, Geophys. J. Int. 167,2, 737–760, DOI: 10.1111/j.1365-246X.2006.03104.x.

    Article  Google Scholar 

  56. Tape, C., Q. Liu, A. Maggi, and J. Tromp (2009), Adjoint tomography of the Southern California crust, Science 325,5943, 988–992, DOI: 10.1126/science.1175298.

    Article  Google Scholar 

  57. Tape, C., Q. Liu, A. Maggi, and J. Tromp (2010), Seismic tomography of the southern California crust based on spectral-element and adjoint methods, Geophys. J. Int. 180,1, 433–462, DOI: 10.1111/j.1365-246X.2009.04429.x.

    Article  Google Scholar 

  58. Tarantola, A. (1984), Inversion of seismic reflection data in the acoustic approximation, Geophysics 49,8, 1259–1266, DOI: 10.1190/1.1441754.

    Article  Google Scholar 

  59. Trinks, I., S.C. Singh, C.H. Chapman, P.J. Barton, M. Bosch, and A. Cherrett (2005), Adaptive traveltime tomography of densely sampled seismic data, Geophys. J. Int. 160,3, 925–938, DOI: 10.1111/j.1365-246X.2005.02531.x.

    Article  Google Scholar 

  60. Vidale, J.E. (1990), Finite-difference calculation of traveltimes in three dimensions, Geophysics 55,5, 521–526, DOI: 10.1190/1.1442863.

    Article  Google Scholar 

  61. Virieux, J., and S. Operto (2009), An overview of full-waveform inversion in exploration geophysics, Geophysics 74,6, WCC1–WCC26, DOI: 10.1190/1.3238367.

    Article  Google Scholar 

  62. White, D.J., and R.M. Clowes (1994), Seismic attenuation structure beneath the Juan de Fuca Ridge from tomographic inversion of amplitudes, J. Geophys. Res. 99,B2, 3043–3056, DOI: 10.1029/93JB02039.

    Article  Google Scholar 

  63. Yliniemi, J., E. Kozlovskaya, S.-E. Hjelt, K. Komminaho, A. Ushakov, and SVEKALAPKO Seismic Tomography Working Group (2004), Structure of the crust and uppermost mantle beneath southern Finland revealed by analysis of local events registered by the SVEKALAPKO seismic array, Tectonophysics 394,1–2, 41–67, DOI: 10.1016/j.tecto.2004.07.056.

    Article  Google Scholar 

  64. Zelt, B.C., M. Talwani, and C.A. Zelt (1998), Prestack depth migration of dense wide-angle seismic data, Tectonophysics 286,1–4, 193–208, DOI: 10.1016/S0040-1951 (97)00265-5.

    Article  Google Scholar 

  65. Zelt, C.A., and P.J. Barton (1998), Three-dimensional seismic refraction tomography: A comparison of two methods applied to data from the Faeroe Basin, J. Geophys. Res. 103,B4, 7187–7210, DOI: 10.1029/97JB03536.

    Article  Google Scholar 

  66. Zelt, C.A., and R.B. Smith (1992), Seismic traveltime inversion for 2-D crustal velocity structure, Geophys. J. Int. 108,1, 16–34, DOI: 10.1111/j.1365-246X.1992.tb00836.x.

    Article  Google Scholar 

  67. Zelt, C.A, K. Sain, J.V. Naumenko, and D.S. Sawyer (2003), Assessment of crustal velocity models using seismic refraction and reflection tomography, Geophys. J. Int. 153,3, 609–626, DOI: 10.1046/j.1365-246X.2003.01919.x.

    Article  Google Scholar 

  68. Zelt, C.A., R.G. Pratt, A.J. Brenders, S. Hanson-Hedgecock, and J.A. Hole (2005), Advancements in long-offset seismic imaging: A blind test of traveltime and waveform tomography, American Geophysical Union, Spring Meeting 2005, Abstract S52A-04.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michał Malinowski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Malinowski, M. Models of the Earth’s crust from controlled-source seismology — Where we stand and where we go?. Acta Geophys. 61, 1437–1456 (2013). https://doi.org/10.2478/s11600-013-0156-7

Download citation

Key words

  • crustal structure
  • seismic tomography
  • wide-angle reflection/refraction
  • full-waveform inversion.