Skip to main content

Fractional-order derivative and time-dependent viscoelastic behaviour of rocks and minerals

Abstract

A general constitutive equation for viscoelastic behaviour of rocks and minerals with fractional-order derivative is investigated. This constitutive law is derived based on differential geometry and thermodynamics of rheology, and the fractional order of derivative represents the degree of time delay. Analyzing some laboratory experimental data of high temperature deformation of rocks and minerals such as halite, marble and orthopyroxene, we propose how to determine the orders of fractional derivative for viscoelastic behaviours of rocks and minerals. The order is related to the exponents for the temporal scaling in the relaxation modulus and the stress power-law of strain rate, i.e., the non-Newtonian flow law, and considered as an indicator representing the macroscopic behaviour and microscopic dynamics of rocks.

This is a preview of subscription content, access via your institution.

References

  1. Bagley, R.L., and P.J. Torvik (1983), Fractional calculus — A different approach to the analysis of viscoelastically damped structures, AIAA J. 21,5, 741–748, DOI: 10.2514/3.8142.

    Article  Google Scholar 

  2. Biot, M.A. (1954), Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena, J. Appl. Phys. 25,11, 1385–1391, DOI: 10.1063/1.1721573.

    Article  Google Scholar 

  3. Caputo, M., and F. Mainardi (1971), A new dissipation model based on memory mechanism, Pure Appl. Geophys. 91, 134–147, DOI: 10.1007/BF00879562.

    Article  Google Scholar 

  4. Coussot, C., S. Kalyanam, R. Yapp, and M.F. Insana (2009), Fractional derivative models for ultrasonic characterization of polymer and breast tissue viscoelasticity, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56,4, 715–726, DOI: 10.1109/TUFFC.2009.1094.

    Article  Google Scholar 

  5. Findley, W.N., J.S. Lay, and K. Onaran (1976), Creep and Relaxation of Nonlinear Viscoelastic Materials: with an Introduction to Linear Viscoelasticity, North-Holland Series in Applied Mathematics and Mechanics, Vol. 18, North-Holland, Amsterdam.

    Google Scholar 

  6. Fung, Y.C. (1965), Foundations of Solid Mechanics, Prentice-Hall International Series in Dynamics, Vol. 1, Prentice-Hall, London.

    Google Scholar 

  7. Hanyga, A. (2007), Fractional-order relaxation laws in non-linear viscoelasticity, Continuum Mech. Thermodyn. 19,1–2, 25–36, DOI: 10.1007/s00161-007-0042-0.

    Article  Google Scholar 

  8. Hanyga, A., and M. Seredyńska (2008), Hamiltonian and Lagrangian theory of viscoelasticity, Continuum Mech. Thermodyn. 19,8, 475–492, DOI: 10.1007/s00161-007-0065-6.

    Article  Google Scholar 

  9. Heard, H.C. (1963), Effect of large changes in strain rate in the experimental deformation of Yule marble, J. Geol. 71,2, 162–195, DOI: 10.1086/626892.

    Article  Google Scholar 

  10. Heard, H.C. (1972), Steady-State flow in polycrystalline halite at pressures of 2 kilobars. In: H.C. Heard et al. (eds.), Flow and Fracture of Rocks, Geophysi cal Monograph Series, Vol. 16, AGU, Washington, D.C., DOI: 10.1029/GM016p0191.

    Chapter  Google Scholar 

  11. Heard, H.C., and C.B. Raleigh (1972), Steady-state flow in marble at 500° to 800 °C, Geol. Soc. Am. Bull. 83,4, 935–956, DOI: 10.1130/0016-7606(1972)83[935:SFIMAT]2.0.CO;2.

    Article  Google Scholar 

  12. Ikeda, S. (1975), Prolegomena to Applied Geometry, Mahā ShobŌ, Koshigaya (in Japanese, the contents related to our discussion are also referred in English in Yajima and Nagahama 2010).

    Google Scholar 

  13. Ikeda, S. (1985), Differential Geometrical Studies in Rheology — Fundamental Theories of Rheological Deformation Fields by means of Differential Geometry, Nippatsu Shuppan, Tokyo (in Japanese, the contents related to our discussion are also referred in English in Yajima and Nagahama 2010).

    Google Scholar 

  14. Karato, S. (2008), Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  15. Kawada, Y., and H. Nagahama (2004), Viscoelastic behaviour and temporal fractal properties of lherzolite and marble: possible extrapolation from experimental results to the geological time-scale, Terra Nova 16,3, 128–132, DOI: 10.1111/j.1365-3121.2004.00540.x.

    Article  Google Scholar 

  16. Kawada, Y., and H. Nagahama (2006), Cumulative Benioff strain-release, modified Omori’s law and transient behaviour of rocks, Tectonophysics 424,3–4, 157–166, DOI: 10.1016/j.tecto.2006.03.032.

    Article  Google Scholar 

  17. Kawada, Y., H. Nagahama, and H. Hara (2006), Irreversible thermodynamic and viscoelastic model for power-law relaxation and attenuation of rocks, Tectonophysics 427,1–4, 255–263, DOI: 10.1016/j.tecto.2006.03.049.

    Article  Google Scholar 

  18. Koeller, R.C. (1984), Applications of fractional calculus to the theory of viscoelasticity, J. Appl. Mech. 51,2, 299–307, DOI: 10.1115/1.3167616.

    Article  Google Scholar 

  19. Nagahama, H. (1994), High-temperature viscoelastic behaviour and long time tail of rocks. In: J.H. Kruhl (ed.), Fractal and Dynamical Systems in Geosciences, Springer, Berlin, 121–129.

    Chapter  Google Scholar 

  20. Nakamura, N., and H. Nagahama (1999), Geomagnetic field perturbation and fault creep motion: a new tectonomagnetic model. In: M. Hayakawa (ed.), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, TERRAPUB, Tokyo, 307–323.

    Google Scholar 

  21. Nutting, P.G. (1921), A new general law of deformation, J. Franklin Inst.-Eng. Appl. Math. 191,5, 679–685, DOI: 10.1016/S0016-0032(21)90171-6.

    Article  Google Scholar 

  22. Ohuchi, T., S. Karato, and K. Fujino (2011), Strength of single-crystal orthopyroxene under lithospheric conditions, Contrib. Mineral. Petr. 161,6, 961–975, DOI: 10.1007/s00410-010-0574-3.

    Article  Google Scholar 

  23. Podlubny, I. (2002), Geometric and physical interpretations of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal. 5,4, 367–386.

    Google Scholar 

  24. Poirier, J.P. (1980), Creep of Crystals, Cambridge University Press, Cambridge.

    Google Scholar 

  25. Rossikhin, Y.A., and M.V. Shitikova (1997), Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev. 50,1, 15–67, DOI: 10.1115/1.3101682.

    Article  Google Scholar 

  26. Schapery, R.A. (1964), Application of thermodynamics to thermomechanical, fracture, and birefringent phenomena in viscoelastic media, J. Appl. Phys. 35,5, 1451–1465, DOI: 10.1063/1.1713649.

    Article  Google Scholar 

  27. Schiessel, H., and A. Blumen (1993), Hierarchical analogues to fractional relaxation equations, J. Phys. A. 26,19, 5057–5069, DOI: 10.1088/0305-4470/26/19/034.

    Article  Google Scholar 

  28. Schiessel, H., R. Metzler, A. Blumen, and T.F. Nonnenmacher (1995), Generalized viscoelastic models: their fractional equations with solutions, J. Phys. A 28,23, 6567–6584, DOI: 10.1088/0305-4470/28/23/012.

    Article  Google Scholar 

  29. Shimamoto, T. (1987), High-temperature viscoelastic behavior of rocks. In: Proc. 7th Japan Symposium on Rock Mechanics, Japanese Committee of Rock Mechanics, Tokyo, 467–472 (in Japanese with English abstract).

    Google Scholar 

  30. Suguri, T. (1952), Theory of invariants in the geometry of paths, J. Math. Soc. Japan 4,3–4, 231–268, DOI: 10.2969/jmsj/00430231.

    Article  Google Scholar 

  31. Turcotte, D.L., and G. Schubert (2002), Geodynamics, 2nd ed., Cambridge University Press, Cambridge.

    Book  Google Scholar 

  32. Yajima, T., and H. Nagahama (2010), Differential geometry of viscoelastic models with fractional-order derivatives, J. Phys. A 43,38, 385207, DOI: 10.1088/1751-8113/43/38/385207.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yusuke Kawada.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kawada, Y., Yajima, T. & Nagahama, H. Fractional-order derivative and time-dependent viscoelastic behaviour of rocks and minerals. Acta Geophys. 61, 1690–1702 (2013). https://doi.org/10.2478/s11600-013-0153-x

Download citation

Key words

  • fractional-order derivative
  • differential geometry
  • memory effect
  • viscoelasticity
  • rock rheology