Skip to main content

Self-affinities of landforms and folds in the Northeast Honshu Arc, Japan

Abstract

A method to analyze self-affinities is introduced and applied to the large scale fold geometries of Quaternary and Tertiary sediments or geographical topographies in the inner belt of the Northeast Honshu Arc, Japan. Based on this analysis, their geometries are self-affine and can be differently scaled in different directions. We recognize a crossover from local to global altitude (vertical) variation of the geometries of folds and topographies. The characteristic length for the crossover of topographies (landforms) is about 25 km and is related to the half wavelength of the crustal buckling folds or possible maximum magnitude of inland earthquakes in the Northeast Honshu Arc. Moreover, self-affinity of the folds and topographies can be connected with the b-value in Gutenberg-Richter℉s law. We obtain two average Hurst exponents obtained from the self-affinities of folds in the Northeast Honshu Arc. This indicates that there are two possible seismic modes for the smaller and larger ranges in the focal regions in the Northeast Honshu Arc.

This is a preview of subscription content, access via your institution.

References

  1. Biot, M.A. (1961), Theory of folding of stratified viscoelastic media and its implications in tectonics and orogenesis, Geol. Soc. Am. Bull. 72,11, 1595–1620, DOI: 10.1130/0016-7606(1961)72[1595:TOFOSV]2.0.CO;2.

    Article  Google Scholar 

  2. Feder, J. (1988), Fractals, Plenum Press, New York.

    Book  Google Scholar 

  3. Gutenberg, B., and C.F. Richter (1944), Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34,4, 185–188.

    Google Scholar 

  4. Hunt, G., H. Mühlhaus, B. Hobbs, and A. Ord (1996), Localized folding of viscoelastic layers, Geol. Rundsch. 85,1, 58–64, DOI: 10.1007/BF00192061.

    Article  Google Scholar 

  5. Kitamura, N. (ed.) (1986), Cenozoic Arc Terrane of Northeast Honshu, Japan, Hobundo, Sendai (in Japanese).

    Google Scholar 

  6. Kitazato, H. (1971), Harmonic analysis of the geological structure. In: 5th Annual Meeting of the Geological Society of Japan, Kyushu University, Japan, abstract, p. 390 (in Japanese).

    Google Scholar 

  7. Korvin, G. (1992), Fractal Models in the Earth Sciences, Elsevier, Amsterdam.

    Google Scholar 

  8. Kulik, D.A., and M.I. Chernovsky (1996), Fractal properties of multi-order folding as a tool for exploration of low-grade banded iron ores in the Krivoy Rog Basin (Ukraine), Geol. Rundsch. 85,1, 3–11, DOI: 10.1007/BF00192054.

    Article  Google Scholar 

  9. Malinverno, A. (1989), Testing linear models of sea-floor topography, Pure Appl. Geophys. 131,1–2, 139–155, DOI: 10.1007/BF00874484.

    Article  Google Scholar 

  10. Malinverno, A. (1990), A simple method to estimate the fractal dimension of a selfaffine series, Geophys. Res. Lett. 17,11, 1953–1956, DOI: 10.1029/GL017i 011p01953.

    Article  Google Scholar 

  11. Mandelbrot, B.B. (1977), Fractals: Form, Chance, and Dimension, W.H. Freeman, San Francisco.

    Google Scholar 

  12. Mandelbrot, B.B. (1982), The Fractal Geometry of Nature, W.H. Freeman, New York.

    Google Scholar 

  13. Mareschal, J.-C. (1989), Fractal reconstruction of sea-floor topography, Pure Appl. Geophys. 131,1–2, 197–210, DOI: 10.1007/BF00874487.

    Article  Google Scholar 

  14. Matsuda, T. (1990), Seismic zoning map of Japanese Islands, with maximum magnitudes derived from active fault data, Bull. Earthq. Res. Inst., Univ. Tokyo 65, 289–314 (in Japanese with English abstract).

    Google Scholar 

  15. Matsushita, M., and S. Ouchi (1989a), On the self-affinity of various curves, Physica D 38,1–3, 246–251, DOI: 10.1016/0167-2789(89)90201-7.

    Article  Google Scholar 

  16. Matsushita, M., and S. Ouchi (1989b), On the self-affinity of various curves, J. Phys. Soc. Jpn. 58,5, 1489–1492, DOI: 10.1143/JPSJ.58.1489.

    Article  Google Scholar 

  17. Miyamura, S. (1962), Seismicity and geotectonics, Zisin (J. Seismol. Soc. Jpn.) 15, 23–52 (in Japanese with English abstract).

    Google Scholar 

  18. Mizoue, M. (1980), Tectonic stress and viscosity coefficient of the Earth’s crust as inferred from crustal movements related with active folds, Bull. Earthq. Res. Inst., Univ. Tokyo 55, 483–504 (in Japanese with English abstract).

    Google Scholar 

  19. Mogi, K. (1963), Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes (2nd paper), Bull. Earthq. Res. Inst., Univ. Tokyo 40,4, 831–853.

    Google Scholar 

  20. Mogi, K. (1964), Some discussions on the earthquake occurrence from the standpoint of fracture theory, Chikyu Kagaku (Earth Science) 73, 28–34 (in Japanese with English abstract).

    Google Scholar 

  21. Nagahama, H. (1991), Fracturing in the solid Earth, Sci. Rep. Tohoku Univ., 2nd Ser. Geology 61,2, 103–126.

    Google Scholar 

  22. Nagahama, H. (1994), Self-affine growth pattern of earthquake rupture zones, Pure Appl. Geophys. 142,2, 263–271, DOI: 10.1007/BF00879303.

    Article  Google Scholar 

  23. Nagahama, H. (1998), Fractal structural geology, Mem. Geol. Soc. Jpn. 50, 13–19.

    Google Scholar 

  24. Nagahama, H. (2000), Fractal scalings of rock fragmentation, Earth Sci. Frontiers 7,1, 169–177.

    Google Scholar 

  25. Nagahama, H., and R. Teisseyre (2000), Micromorphic continuum and fractal fracturing in the lithosphere, Pure Appl. Geophys. 157,4, 559–574, DOI: 10.1007/PL00001107.

    Article  Google Scholar 

  26. Nagumo, S. (1969a), A derivation of Ishimoto-Iida’s formula for the frequency distribution of earthquakes from a deformation fracture relation, Zisin (J. Seismol. Soc. Jpn.) 22, 136–143 (in Japanese with English abstract).

    Google Scholar 

  27. Nagumo, S. (1969b), Deformation∼fracture relation in earthquake genesis and derivation of frequency distribution of earthquakes, Bull. Earthq. Res. Inst., Univ. Tokyo 47,6, 1015–1027.

    Google Scholar 

  28. Ord, A. (1994), The fractal geometry of patterned structures in numerical models of rock deformation. In: J.H. Kruhl (ed.), Fractals and Dynamical Systems in Geoscience, Springer, Berlin, 131–155.

    Chapter  Google Scholar 

  29. Otsuki, K. (1995), Why is the crustal shortening of northeast Honshu arc larger in the backarc than around the volcanic front? J. Geol. Soc. Jpn. 101,2, 179–182 (in Japanese).

    Article  Google Scholar 

  30. Otuka, Y. (1933), Contraction of the Japanese islands since the Middle Neogene, Bull. Earthq. Res. Inst., Univ. Tokyo 11, 724–731.

    Google Scholar 

  31. Ouchi, S. (1990), Self-affinity of landform and its measurement, Geogr. Rep. Tokyo Metropolitan Univ. 25, 67–79.

    Google Scholar 

  32. Peitgen, H.O., and D. Saupe (eds.) (1988), The Science of Fractal Images, Springer, Berlin.

    Google Scholar 

  33. Power, W.L., T.E. Tullis, S.R. Brown, G.N. Boitnott, and C.H. Scholz (1987), Roughness of natural fault surfaces, Geophys. Res. Lett. 14,1, 29–32, DOI: 10.1029/GL014i001p00029.

    Article  Google Scholar 

  34. Sato, H. (1989), Degree of deformation of late Cenozoic strata in the Northeast Honshu Arc, Mem. Geol. Soc. Jpn. 32, 257–268 (in Japanese with English abstract).

    Google Scholar 

  35. Sato, H. (1994), The relationship between Late Cenozoic tectonic events and stress field and basin development in northeast Japan, J. Geophys. Res. 99,B11, 22261–22274, DOI: 10.1029/94JB00854.

    Article  Google Scholar 

  36. Scholz, C.H., and C.A. Aviles (1986), The fractal geometry of faults and faulting. In: S. Das, J. Boatwright, and C.H. Scholz (eds.), Earthquake Source Mechanics, Maurice Ewing Series, Vol. 6, Geophysical Monography 37, AGU, Washington, D.C., 147–155, DOI: 10.1029/GM037p0147.

    Chapter  Google Scholar 

  37. Seno, T., S. Stein, and A.E. Gripp (1993), A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data, J. Geophys. Res. 98,B10, 17941–17948, DOI: 10.1029/93JB00782.

    Article  Google Scholar 

  38. The Research Group for Active Faults of Japan (1991), Active Faults in Japan, Sheet Map and Inventories, revised ed., University of Tokyo Press, Tokyo, 437 pp. (in Japanese with English abstract).

    Google Scholar 

  39. Tsuboi, C. (1956), Earthquake energy, earthquake volume, aftershock area, and strength of the earth’s crust, J. Physics Earth 4,2, 63–66, DOI: 10.4294/jpe1952.4.63.

    Article  Google Scholar 

  40. Turcotte, D.L. (1992), Fractals and Chaos in Geology and Geophysics, Cambridge University Press, Cambridge.

    Google Scholar 

  41. Uemura, T. (1989), Deformation facies and its indicator of the Cenozoic system in the Northeast Hoshu Arc, Japan, Mem. Geol Soc. Jpn. 32,3, 269–279 (in Japanese with English abstract).

    Google Scholar 

  42. Wilson, T.H. (2000), Some distinctions between self-similar and self-affine estimates of fractal dimension with case history, Math. Geol. 32,3, 319–335, DOI: 10.1023/A:1007585811281.

    Article  Google Scholar 

  43. Wilson, T.H., and J. Dominic (1998), Fractal interrelationships between topography and structure, Earth Surf. Process. Landforms 23,6, 509–525, DOI: 10.1002/(SICI)1096-9837(199806)23:6〈509::AID-ESP864〉3.0.CO;2-D.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kazuhei Kikuchi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kikuchi, K., Abiko, K., Nagahama, H. et al. Self-affinities of landforms and folds in the Northeast Honshu Arc, Japan. Acta Geophys. 61, 1642–1658 (2013). https://doi.org/10.2478/s11600-013-0151-z

Download citation

Key words

  • landforms
  • folds
  • Northeast Honshu Arc
  • self-affinities
  • Gutenberg-Richter’s law