Skip to main content

Field experiment in Soultz-sous-Forêts, 1993: Changes of the pattern of induced seismicity

Abstract

The data of the known field experiment on water injection in the borehole were analyzed. Parameters of self-similarity of seismicity were estimated in comparison with the changes of water pressure. Changes of seismicity parameters that indicate the redistribution of the failure from lower scales to upper are revealed. The total number of earthquakes per series of the water initiation found to be depended exponentially on the water pressure and seismic activity maximum is delayed gradually relative to beginning of initiation. The growth of induced seismicity zone in time differs from diffusion model for water flow in the porous medium. Analysis carried out from laboratory data indicates that diffusion growth of the failure area may be realized in the dry specimen, without fluid. It could be assumed that both kinetic processes — water and the failure diffusion — can be significant for the development of seismicity induced by the water injection.

This is a preview of subscription content, access via your institution.

References

  1. Abe, S., and N. Suzuki (2012), Aftershocks in modern perspectives: Complex earthquake network, aging, and non-Markovianity, Acta Geophys. 60,3, 547–561, DOI 10.2478/s11600-012-0026-8.

    Article  Google Scholar 

  2. Abercrombie, R., A. McGarr, H. Kanamori, and G. Di Torro (eds.) (2000), Earthquakes: Radiated Energy and the Physics of Faulting, AGU Geophysical Monograph Series, Vol. 170, 327 pp.

  3. Aki, K. (1965), Maximum likelihood estimate of b in the formula log N = a — bM and its confidence limits, Bull. Earthq. Res. Inst., Tokyo Univ. 43,2, 237–239.

    Google Scholar 

  4. Aki, K. (1981), A probabilistic synthesis of precursory phenomena. In: D.W. Simpson and P.G. Richards (eds.), Earthquake Prediction: An International Review, Maurice Ewing Series, Vol. 4, AGU, Washington, D.C., 566–574, DOI 10.1029/ME004p0566.

    Google Scholar 

  5. Bachmann, C., S. Wiemer, and J. Woessner (2010), The induced Basel 2006 earthquake sequence: Mapping seismicity parameters on small scales. In: Abstract Book. The 32nd General Assembly of European Seismological Commission. Montpellier, France.

    Google Scholar 

  6. Bak, P., K. Christensen, L. Danon, and T. Scanlon (2002), Unified scaling law for earthquakes, Phys. Rev. Lett. 88,17, 178501–178504, DOI 10.1103/Phys RevLett.88.178501.

    Article  Google Scholar 

  7. Bird, P. (2003), An updated digital model of plate boundaries, Geochem. Geophys. Geosyst. 4,3, 1027, DOI 10.1029/2001GC000252.

    Article  Google Scholar 

  8. Bormann, P. (ed.) (2002), New Manual of Seismological Observatory Practice, GeoForschungsZentrum, Potsdam.

    Google Scholar 

  9. Bourouis, S., and P. Bernard (2007), Evidence for coupled seismic and aseismic fault slip during water injection in the geothermal site of Soultz (France), and implications for seismogenic transients, Geophys. J. Int. 169,2, 723–732, DOI 10.1111/j.1365-246X.2006.03325.x.

    Article  Google Scholar 

  10. Chelidze, T.L. (1986), Percolation theory as a tool for imitation of fracture process in rocks, Pure Appl. Geophys. 124,4–5, 731–748, DOI 10.1007/BF 00879607.

    Article  Google Scholar 

  11. Chelidze, T.L. (1990), Generalized fractal law of seismicity, Doklady. Akad. Nauk SSSR 314,5, 1104–1105.

    Google Scholar 

  12. Chelidze, T., T. Reuschle, and Y. Gueguen (1994), A theoretical investigation of the fracture energy of heterogeneous brittle materials, J. Phys. Condens. Mat. 6,10, 1857–1868, DOI 10.1088/0953-8984/6/10/005.

    Article  Google Scholar 

  13. Cladouhos, T.T., and R. Marrett (1996), Are fault growth and linkage models consistent with power-law distributions of fault lengths? J. Struct. Geol. 18,2–3, 281–293, DOI 10.1016/S0191-8141(96)80050-2.

    Article  Google Scholar 

  14. Cornet, F.H. (2000), Comment on “Large-scale in situ permeability tensor of rocks from induced microseismicity” by S.A. Shapiro, P. Audigane, J.-J. Royer, Geophys. J. Int. 140,2, 465–469, DOI 10.1046/j.1365-246x.2000.00018.x.

    Article  Google Scholar 

  15. Cornet, F.H., J. Helm, H. Poitrenaud, and A. Etchecopar (1997), Seismic and aseismic slips induced by large-scale fluid injections, Pure Appl. Geophys. 150,3–4, 563–583, DOI 10.1007/s000240050093.

    Article  Google Scholar 

  16. Corral, Á. (2005), Renormalization-group transformations and correlations of seismicity, Phys. Rev. Lett. 95,2, 028501, DOI 10.1103/PhysRevLett.95.028501.

    Article  Google Scholar 

  17. Dahm, T., S. Hainzl, and T. Fischer (2010), Bidirectional and unidirectional fracture growth during hydrofracturing: Role of driving stress gradients, J. Geophys. Res. 115,B12, B12322, DOI 10.1029/2009JB006817.

    Article  Google Scholar 

  18. Daniel, G., E. Prono, F. Renard, F. Thouvenot, S. Hainzl, D. Marsan, A. Helmstetter, P. Traversa, J. L. Got, L. Jenatton, and R. Guiguet (2011), Changes in effective stress during the 2003-2004 Ubaye seismic swarm, France, J. Geophys. Res. 116,B1, B01309, DOI 10.1029/2010JB007551.

    Article  Google Scholar 

  19. Enescu, B., and K. Ito (2001), Some premonitory phenomena of 1995 Hyogo-Ken Nanbu (Kobe) earthquake: seismicity, b-value and fractal dimension, Tectonophysics 338, 3–4, 297–314, DOI 10.1016/S0040-1951(01)00085-3.

    Google Scholar 

  20. Evans, K.F. (2005), Permeability creation and damage due to massive fluid injections into granite at 3.5 km at Soultz: 2. Critical stress and fracture strength, J. Geophys. Res. 110,B4, B04204, DOI 10.1029/2004JB003169.

    Article  Google Scholar 

  21. Evans, K.F., A. Genter, and J. Sausse (2005a), Permeability creation and damage due to massive fluid injections into granite at 3.5 km at Soultz: 1. Borehole observations, J. Geophys. Res. 110,B4, B04203, DOI 10.1029/2004JB 003168.

    Article  Google Scholar 

  22. Evans, K.F., H. Moriya, H. Niitsuma, R.H. Jones, W.S. Phillips, A. Genter, J. Sausse, R. Jung, and R. Baria (2005b), Microseismicity and permeability enhancement of hydrogeologic structures during massive fluid injections into granite at 3 km depth at the Soultz HDR site, Geophys. J. Int. 160,1, 389–412, DOI 10.1111/j.1365-246X.2004.02474.x.

    Article  Google Scholar 

  23. Fischer, T., and A. Guest (2011), Shear and tensile earthquakes caused by fluid injection, Geophys. Res. Lett. 38,5, L05307, DOI 10.1029/2010GL045447.

    Article  Google Scholar 

  24. Fischer, T., S. Hainzl, L. Eisner, S.A. Shapiro, and J. Le Calvez (2008), Microseismic signatures of hydraulic fracture growth in sediment formations: Observations and modeling, J. Geophys. Res. 113,B2, B02307, DOI 10.1029/2007JB005070.

    Article  Google Scholar 

  25. Gérard, A., A. Genter, T. Kohl, P. Lutz, P. Rose, and F. Rummel (2006), The deep EGS (Enhanced Geothermal System) project at Soultz-sous-Forêts (Alsace, France), Geothermics 35,5–6, 473–483, DOI 10.1016/j.geothermics.2006.12.001.

    Article  Google Scholar 

  26. Goto, K., and K. Otsuki (2004), Size and spatial distributions of fault populations: Empirically synthesized evolution laws for the fractal geometries, Geophys. Res. Lett. 31,5, L05601, DOI 10.1029/2003GL018868.

    Article  Google Scholar 

  27. Helmstetter, A., G. Ouillon, and D. Sornette (2003), Are aftershocks of large Californian earthquakes diffusing? J. Geophys. Res. 108,B10, 2483, DOI 10.1029/2003JB002503.

    Article  Google Scholar 

  28. Hill, D.P. (1977), A model for earthquake swarms, J. Geophys. Res. 82,8, 1347–1352, DOI 10.1029/JB082i008p01347.

    Article  Google Scholar 

  29. Horálek, J., and T. Fischer (2008), Role of crustal fluids in triggering the West Bohemia/Vogtland earthquake swarms: Just what we know (a review), Stud. Geophys. Geod. 52,4, 455–478, DOI 10.1007/s11200-008-0032-0.

    Article  Google Scholar 

  30. Huber, P.J., and E.M. Ronchetti (2011), Robust Statistics, 2nd ed., JohnWiley & Sons Inc., New York, 380 pp.

    Google Scholar 

  31. Huc, M., and I.G. Main (2003), Anomalous stress diffusion in earthquake triggering: Correlation length, time dependence, and directionality, J. Geophys. Res. 108,B7, 2324, DOI 10.1029/2001JB001645.

    Article  Google Scholar 

  32. Kagan, Y.Y. (2007), Earthquake spatial distribution: the correlation dimension, Geophys. J. Int. 168,3, 1175–1194, DOI 10.1111/j.1365-246X.2006.03251.x.

    Article  Google Scholar 

  33. Keilis-Borok, V.I., V.G. Kosobokov, and S.A. Mazhkenov (1989), On similarity in the spatial distribution of seismicity, Vychislitel’naya Seismologiya 22, 28–40 (in Russian).

    Google Scholar 

  34. King, G. (1983), The accommodation of large strains in the upper lithosphere of the Earth and other solids by self-similar fault systems: the geometrical origin of b-value, Pure Appl. Geophys. 121,5–6, 761–815, DOI 10.1007/BF 02590182.

    Article  Google Scholar 

  35. Kosobokov, V.G., and S.A. Mazhkenov (1988), Spatial characteristics of similarity for earthquake sequences: Fractality of seismicity. In: Lecture Notes of the Workshop on Global Geophysical Informatics and Application to Research in Earthquake Prediction and Reduction of Seismic Risk (15 November–16 December 1988), ICTP, Trieste, 1–15.

    Google Scholar 

  36. Kosobokov, V.G., and S.A. Mazhkenov (1994), On similarity in the spatial distribution of seismicity. In: D.K. Chowdhury (ed.), Selected Papers from Volumes 22 and 23 of Vychislitel’naya Seysmologiya, Comput. Seismol. Geodyn., Vol. 1, AGU, Washington, D.C., 6–15, DOI 10.1029/CS001p0006.

    Google Scholar 

  37. Lei, X., K. Kusunose, T. Satoh, and O. Nishizawa (2003), The hierarchical rupture process of a fault: an experimental study, Phys. Earth Planet. In. 137,1–4, 213–228, DOI 10.1016/S0031-9201(03)00016-5.

    Article  Google Scholar 

  38. Lockner, D.A. (1993), The role of acoustic emission in the study of rock fracture, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30,7, 883–899, DOI 10.1016/0148-9062(93)90041-B.

    Article  Google Scholar 

  39. Lockner, D.A., and S.A. Stanchits (2002), Undrained poroelastic response of sandstones to deviatoric stress change, J. Geophys. Res. 107,B12, 2353, DOI 10.1029/2001JB001460.

    Article  Google Scholar 

  40. Lockner, D.A., J.D. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin (1991), Quasi-static fault growth and shear fracture energy in granite, Nature 350,6313, 39–42, DOI 10.1038/350039a0.

    Article  Google Scholar 

  41. Lockner, D.A., D.E. Moore, and Z. Reches (1992a), Microcrack interaction leading to shear fracture. In: Proc. 33rd U.S. Rock Mechanics Symposium, Balkema, Rotterdam, 807–816.

    Google Scholar 

  42. Lockner, D.A., J.D. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin (1992b), Observations of quasistatic fault growth from acoustic emissions. In: B. Evans, and T.-F. Wong (eds.), Fault Mechanics and Transport Properties of Rocks, Academic Press Inc., New York, 3–31.

    Chapter  Google Scholar 

  43. Main, I.G., P.G. Meredith, and C. Jones (1989), A reinterpretation of the precursory seismic b-value anomaly from fracture mechanics, Geophys. J. Int. 96,1, 131–138, DOI 10.1111/j.1365-246X.1989.tb05255.x.

    Article  Google Scholar 

  44. Marsan, D., C.J. Bean, S. Steacy, and J. McCloskey (2000), Observation of diffusion processes in earthquake populations and implications for the predictability of seismicity systems, J. Geophys. Res. 105,B12, 28081–28094, DOI 10.1029/2000JB900232.

    Article  Google Scholar 

  45. Mjachkin, V.I., W.F. Brace, G.A. Sobolev, and J.H. Dieterich (1975), Two models for earthquake forerunners, Pure Appl. Geophys. 113,1, 169–181, DOI 10.1007/BF01592908.

    Article  Google Scholar 

  46. Mosteller, F., and J.W. Tukey (1977), Data Analysis and Regression. A Second Course in Statistics, Addison-Wesley Series in Behavioral Science: Quantitative Methods, Addison-Wesley, Reading, 588 pp.

    Google Scholar 

  47. Nicol, A., J.J. Walsh, J. Watterson, and P.A. Gillespie (1996), Fault size distributions — are they really power-law? J. Struct. Geol. 18,2–3, 191–197, DOI 10.1016/S0191-8141(96)80044-7.

    Article  Google Scholar 

  48. Noir, J., E. Jacques, S. Békri, P. M. Adler, P. Tapponnier, and G.C.P. King (1997), Fluid flow triggered migration of events in the 1989 Dobi earthquake sequence of Central Afar, Geophys. Res. Lett. 24,18, 2335–2338, DOI 10.1029/97GL02182.

    Article  Google Scholar 

  49. Pandey, A.P., and R.K. Chadha (2003), Surface loading and triggered earthquakes in the Koyna-Warna region, western India, Phys. Earth Planet. In. 139,3–4, 207–223, DOI 10.1016/j.pepi.2003.08.003.

    Article  Google Scholar 

  50. Pisarenko, D.V., and V.F. Pisarenko (1995), Statistical estimation of the correlation dimension, Phys. Lett. A 197,1, 31–39, DOI 10.1016/0375-9601(94) 00923-D.

    Article  Google Scholar 

  51. Pisarenko, V.F. (1989), About recurrence law of earthquakes. In: M.A. Sadovsky (ed.), Discrete Properties of the Geophysical Environment, Nauka, Moscow, 47–60 (in Russian).

    Google Scholar 

  52. Ponomarev, A.V., A.D. Zavyalov, V.B. Smirnov, and D.A. Lockner (1997), Physical modeling of the formation and evolution of seismically active fault zones, Tectonophysics 277,1–3, 57–81, DOI 10.1016/S0040-1951(97) 00078-4.

    Article  Google Scholar 

  53. Ponomarev, A., V. Smirnov, A. Patonin, S. Stroganov, and T. Kotlyar (2008), Modeling of transient processes in seismicity: Laboratory experiments (I). In: 31th General Assembly of ESC, 7–12 September 2008, Hersonissos, Crete island, Greece, Abstracts, p. 152.

    Google Scholar 

  54. Reches, Z., and D.A. Lockner (1994), Nucleation and growth of faults in brittle rocks, J. Geophys. Res. 99,B9, 18159–18173, DOI 10.1029/94JB00115.

    Article  Google Scholar 

  55. Scholz, C.H. (2002), The Mechanics of Earthquakes and Faulting, 2nd ed., Cambridge University Press, Cambridge, 471 pp., DOI 10.1017/CBO978 0511818516.

    Book  Google Scholar 

  56. Shapiro, S.A., and C. Dinske (2009), Scaling of seismicity induced by nonlinear fluid-rock interaction, J. Geophys. Res. 114,B9, B09307, DOI 10.1029/2008JB006145.

    Article  Google Scholar 

  57. Shapiro, S.A., P. Audigane, and J.-J. Royer (1999), Large-scale in situ permeability tensor of rocks from induced microseismicity, Geophys. J. Int. 137,1, 207–213, DOI 10.1046/j.1365-246x.1999.00781.x.

    Article  Google Scholar 

  58. Shapiro, S.A., C. Dinske, and J. Kummerow (2007), Probability of a givenmagnitude earthquake induced by a fluid injection, Geophys. Res. Lett. 34,22, L22314, DOI 10.1029/2007GL031615.

    Article  Google Scholar 

  59. Singh, Ch., P.M. Bhattacharya, and R.K. Chadha (2008), Seismicity in the Koyna-Warna reservoir site in Western India: Fractal and b-value mapping, Bull. Seismol. Soc. Am. 98,1, 476–482, DOI 10.1785/0120070165.

    Article  Google Scholar 

  60. Smirnov, V.B. (2003), Estimating the duration of the lithospheric failure cycle from earthquake catalogs, Izv. — Phys. Solid Earth 39,10, 794–811.

    Google Scholar 

  61. Smirnov, V.B. and A.V. Ponomarev (2004), Regularities in relaxation of the seismic regime according to natural and laboratory data, Izv. — Phys. Solid Earth 40,10, 807–816.

    Google Scholar 

  62. Smith, W.D. (1981), The b-value as an earthquake precursor, Nature 289,5794, 136–139, DOI 10.1038/289136a0.

    Article  Google Scholar 

  63. Sobolev, G.A. (2011), Seismicity dynamics and earthquake predictability, Nat. Hazards Earth Syst. Sci. 11, 445–458, DOI 10.5194/nhess-11-445-2011.

    Article  Google Scholar 

  64. Sornette, D., and V. Pisarenko (2003), Fractal plate tectonics, Geophys. Res. Lett. 30,3, 1105, DOI 10.1029/2002GL015043.

    Article  Google Scholar 

  65. Turcotte, D.L. (1992), Fractals and Chaos in Geology and Geophysics, Cambridge University Press, Cambridge, 220 pp.

    Google Scholar 

  66. Vallianatos, F., G. Michas, G. Papadakis, and P. Sammonds (2012), A non-extensive statistical physics view to the spatiotemporal properties of the June 1995, Aigion earthquake (M6.2) aftershock sequence (West Corinth rift, Greece), Acta Geophys. 60,3, 758–768, DOI 10.2478/s11600-012-0011-2.

    Article  Google Scholar 

  67. Vlahos, L., H. Isliker, Y. Kominis, and K. Hizanidis (2008), Normal and anomalous diffusion: A Tutorial. In: T. Bountis (ed.), Order and Chaos, Vol. 10, Patras University Press, Patras.

    Google Scholar 

  68. Watterson, J., J.J. Walsh, P.A. Gillespie, and S. Easton (1996), Scaling systematics of fault sizes on a large-scale range fault map, J. Struct. Geol. 18,2–3, 199–214, DOI 10.1016/S0191-8141(96)80045-9.

    Article  Google Scholar 

  69. Wiemer, S., and M. Wyss (2000), Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan, Bull. Seismol. Soc. Am. 90,4, 859–869, DOI 10.1785/0119990114.

    Article  Google Scholar 

  70. Yielding, G., T. Needham, and H. Jones (1996), Sampling of fault populations using sub-subsurface data: a review, J. Struct. Geol. 18,2–3, 135–146, DOI 10.1016/S0191-8141(96)80039-3.

    Article  Google Scholar 

  71. Zavyalov, A.D. (2002), Testing the MEE prediction algorithm in various seismically active regions in the 1985-2000 period: Results and analysis, Izv. — Phys. Solid Earth 38,4, 262–275.

    Google Scholar 

  72. Zhang, G., and Z. Fu (1981), Some features of medium- and short-term anomalies before great earthquakes. In: D.W. Simpson and P.G. Richards (eds.), Earthquake Prediction. An International Review, Maurice Ewing Series, Vol. 4, AGU, Washington, D.C., 497–509, DOI 10.1029/ME004p0497.

    Google Scholar 

  73. Zhurkov, S.N. (1965), Kinetic concept of the strength of solids, Int. J. Fract. Mech. 1,4, 311–323.

    Google Scholar 

  74. Zhurkov, S.N., V.S. Kuksenko, V.A. Petrov, V.N. Savlyev, and U. Sultanov (1977), On the problem of prediction of rock fracture, Izv. -Phys. Solid Earth 13,6, 374–379.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vladimir Smirnov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smirnov, V., Ponomarev, A., Bernard, P. et al. Field experiment in Soultz-sous-Forêts, 1993: Changes of the pattern of induced seismicity. Acta Geophys. 61, 1598–1625 (2013). https://doi.org/10.2478/s11600-013-0150-0

Download citation

Key words

  • induced seismicity
  • seismicity parameters
  • diffusion
  • kinetic process