Skip to main content

From slots to tubes: The influence of dimensionality on fracture dissolution models

Abstract

We briefly review the models of fracture dissolution process, discussing the experimental and numerical evidence showing that this phenomenon is inherently two-dimensional and hence cannot be accurately described by one-dimensional models. The physical reason for this incompatibility is that a dissolution front in a single rock fracture is potentially unstable to small variations in local permeability, leading to spontaneous formation of dissolution channels in the rock. This leads to a dramatic increase of fissure opening rates, which must be taken into account not only in the estimation of karstification times but also in the assessment of ground subsidence, dam collapse or toxic seepage risks.

This is a preview of subscription content, access via your institution.

References

  1. Andre, B.J., and H. Rajaram (2005), Dissolution of limestone fractures by cooling waters: Early development of hypogene karst systems, Water Resour. Res. 41,1, 1–16, W01015, DOI: 10.1029/2004WR003331.

    Article  Google Scholar 

  2. Chadam, J., D. Hoff, E. Merino, P. Ortoleva, and A. Sen (1986), Reactive infiltration instabilities, IMA J. Appl. Math. 36,3, 207–221, DOI: 10.1093/imamat/36.3.207.

    Article  Google Scholar 

  3. Chaudhuri, A., H. Rajaram, and H. Viswanathan (2008), Alteration of fractures by precipitation and dissolution in gradient reaction environments: Computational results and stochastic analysis, Water Resour. Res. 44,10, W10410, DOI: 10.1029/2008WR006982.

    Article  Google Scholar 

  4. Chaudhuri, A., H. Rajaram, H. Viswanathan, G. Zyvoloski, and P. Stauffer (2009), Buoyant convection resulting from dissolution and permeability growth in vertical limestone fractures, Geophys. Res. Lett. 36,3, L03401, DOI: 10.1029/2008GL036533.

    Article  Google Scholar 

  5. Cheung, W., and H. Rajaram (2002), Dissolution finger growth in variable aperture fractures: Role of the tip-region flow field, Geophys. Res. Lett. 29,22, 32-1–32-4, DOI: 10.1029/2002GL015196.

    Article  Google Scholar 

  6. Detwiler, R.L., and H. Rajaram (2007), Predicting dissolution patterns in variable aperture fractures: Evaluation of an enhanced depth-averaged computational model, Water Resour. Res. 43,4, W04403, DOI: 10.1029/2006WR005147.

    Article  Google Scholar 

  7. Detwiler, R.L., R.J. Glass, and W.L. Bourcier (2003), Experimental observations of fracture dissolution: The role of Peclet number on evolving aperture variability, Geophys. Res. Lett. 30,12, 1648, DOI: 10.1029/2003GL 017396.

    Article  Google Scholar 

  8. Dijk, P., and B. Berkowitz (1998), Precipitation and dissolution of reactive solutes in fractures, Water Resour. Res. 34,3, 457–470, DOI: 10.1029/97WR03238.

    Article  Google Scholar 

  9. Dreybrodt, W. (1990), The role of dissolution kinetics in the development of karst aquifers in limestone: a model simulation of karst evolution, J. Geol. 98,5, 639–655, DOI: 10.1086/629431.

    Article  Google Scholar 

  10. Dreybrodt, W. (1996), Principles of early development of karst conduits under natural and man-made conditions revealed by mathematical analysis of numerical models, Water Resour. Res. 32,9, 2923–2935, DOI: 10.1029/96WR01332.

    Article  Google Scholar 

  11. Durham, W.B., W.L. Bourcier, and E.A. Burton (2001), Direct observation of reactive flow in a single fracture, Water Resour. Res. 37,1, 1–12, DOI: 10.1029/2000WR900228.

    Article  Google Scholar 

  12. Flamache, A. (1895), Sur la formation des grottes et des vallees souterraines, Bull. Soc. Belge Géol. Paléontol. Hydrol. 9, 355–367 (in French).

    Google Scholar 

  13. Gouze, P., C. Noiriel, C. Bruderer, D. Loggia, and R. Leprevost (2003), X-ray tomography characterization of fracture surfaces during dissolution, Geophys. Res. Lett. 30,5, 1267, DOI: 10.1029/2002GL016755.

    Article  Google Scholar 

  14. Groves, C.G., and A.D. Howard (1994), Minimum hydrochemical conditions allowing limestone cave development, Water Resour. Res. 30,3, 607–615, DOI: 10.1029/93WR02945.

    Article  Google Scholar 

  15. Hanna, R.B., and H. Rajaram (1998), Influence of aperture variability on dissolutional growth of fissures in karst formations, Water Resour. Res. 34,11, 2843–2853, DOI: 10.1029/98WR01528.

    Article  Google Scholar 

  16. Hinch, E.J., and B.S. Bhatt (1990), Stability of an acid front moving through porous rock, J. Fluid Mech. 212, 279–288, DOI: 10.1017/S0022112090001963.

    Article  Google Scholar 

  17. Hoefner, M.L., and H.S. Fogler (1988), Pore evolution and channel formation during flow and reaction in porous media, AIChE J. 34,1, 45–54, DOI: 10.1002/aic.690340107.

    Article  Google Scholar 

  18. Lyell, C. (1830), Principles of Geology, John Murray, London.

    Google Scholar 

  19. Motyka, J., and Z. Wilk (1984), Hydraulic structure of karst-fissured Triassic rocks in the vicinity of Olkusz (Poland), Kras i Speleologia 14,5, 11–24.

    Google Scholar 

  20. Oltéan, C., F. Golfier, and M.A. Buès (2013), Numerical and experimental investigation of buoyancy-driven dissolution in vertical fracture, J. Geophys. Res. 118,5, 2038–2048, DOI: 10.1002/jgrb.50188.

    Article  Google Scholar 

  21. Ortoleva, P., J. Chadam, E. Merino, and A. Sen (1987), Geochemical self-organization II: The reactive-infiltration instability, Am. J. Sci. 287, 1008–1040, DOI: 10.2475/ajs.287.10.1008.

    Article  Google Scholar 

  22. Paillet, F.L., A.E. Hess, C.H. Cheng, and E. Hardin (1987), Characterization of fracture permeability with high-resolution vertical flow measurements during borehole pumping, Groundwater 25,1, 28–40, DOI: 10.1111/j.1745-6584.1987.tb02113.x.

    Article  Google Scholar 

  23. Palmer, A.N. (1991), Origin and morphology of limestone caves, Geol. Soc. Am. Bull. 103,1, 1–21, DOI: 10.1130/0016-7606(1991)103〈0001:OAMOLC〉2.3.CO;2.

    Article  Google Scholar 

  24. Phillips, O.M. (1990), Flow-controlled reactions in rock fabrics, J. Fluid Mech. 212, 263–278, DOI: 10.1017/S0022112090001951.

    Article  Google Scholar 

  25. Plummer, L.N., and T.M.L. Wigley (1976), The dissolution of calcite in CO2-saturated solutions at 25°C and 1 atmosphere total pressure, Geochim. Cosmochim. Ac. 40,2, 191–202, DOI: 10.1016/0016-7037(76)90176-9.

    Article  Google Scholar 

  26. Rajaram, H., W. Cheung, and A. Chaudhuri (2009), Natural analogs for improved understanding of coupled processes in engineered Earth systems: examples from karst system evolution, Curr. Sci. India. 97,8, 1162–1176.

    Google Scholar 

  27. Shaw, T.R. (2000), Views on cave formation before 1900. In: A.B. Klimchouk, D.C. Ford, A.N. Palmer, and W. Dreybrodt (eds.), Speleogenesis: Evolution of Karst Aquifers, National Speleological Society, Huntsville, 21–29.

    Google Scholar 

  28. Sherwood, J.D. (1987), Stability of a plane reaction front in a porous medium, Chemical Eng. Sci. 42,7, 1823–1829, DOI: 10.1016/0009-2509(87)80187-2.

    Article  Google Scholar 

  29. Steefel, C.I., and A.C. Lasaga (1990), Evolution of dissolution patterns: permeability change due to coupled flow and reaction. In: D. Melchior, and R.L. Bassett (eds.), Symp. American Chemical Society” Chemical Modeling in Aqueous Systems II”, 25 September 1988, Los Angeles, USA, 212–225.

    Google Scholar 

  30. Steefel, C.I., and A.C. Lasaga (1994), A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems, Am. J. Sci. 294,5, 529–592, DOI: 10.2475/ajs.294.5.529.

    Article  Google Scholar 

  31. Szymczak, P., and A.J.C. Ladd (2004), Microscopic simulations of fracture dissolution, Geophys. Res. Lett. 31,23, L23606, DOI: 10.1029/2004GL 021297.

    Article  Google Scholar 

  32. Szymczak, P., and A.J.C. Ladd (2006), A network model of channel competition in fracture dissolution, Geophys. Res. Lett. 33,5, L05401, DOI: 10.1029/2005 GL025334.

    Article  Google Scholar 

  33. Szymczak, P., and A.J.C. Ladd (2009), Wormhole formation in dissolving fractures, J. Geophys. Res. 114,B6, B06203, DOI: 10.1029/2008JB006122.

    Article  Google Scholar 

  34. Szymczak, P., and A.J.C. Ladd (2011a), The initial stages of cave formation: Beyond the one-dimensional paradigm, Earth Planet. Sci. Lett. 301,3–4, 424–432, DOI: 10.1016/j.epsl.2010.10.026.

    Article  Google Scholar 

  35. Szymczak, P., and A.J.C. Ladd (2011b), Instabilities in the dissolution of a porous matrix, Geophys. Res. Lett. 38,7, L07403, DOI: 10.1029/2011GL046720.

    Article  Google Scholar 

  36. Szymczak, P., and A.J.C. Ladd (2012), Reactive-infiltration instabilities in rocks. Fracture dissolution, J. Fluid Mech. 702, 239–264, DOI: 10.1017/jfm.2012.174.

    Article  Google Scholar 

  37. Thirria, M.E. (1830), Notice sur le terrain jurassique du département de la Haute-Saône et sur quelques grottes. In: Mémoires de la Société d’histoire naturelle de Strasbourg, F.G. Levrault, Paris (in French).

    Google Scholar 

  38. Trudgill, S.T. (2008), Limestone landforms 1890-1965. In: T.P. Burt, R.J. Chorley, D. Brunsden, N.J. Cox, and A.S. Goudie (eds.), The History of the Study of Landforms or the Development of Geomorphology, Geol. Soc., London, 107–125.

    Google Scholar 

  39. Weyl, P.K. (1958), The solution kinetics of calcite, J. Geol. 66,2, 163–176, DOI: 10.1086/626492.

    Article  Google Scholar 

  40. White, W.B. (1977), Role of solution kinetics in the development of karst aquifers. Karst hydrogeology, Mem. Int. Assoc. Hydrogeol. 12, 503–517.

    Google Scholar 

  41. White, W.B., and J. Longyear (1962), Some limitations on speleogenetic speculation imposed by the hydraulics of groundwater flow in limestone, Nittany Grotto Newslett. 10, 155–167.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Piotr Szymczak.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Szymczak, P. From slots to tubes: The influence of dimensionality on fracture dissolution models. Acta Geophys. 61, 1556–1572 (2013). https://doi.org/10.2478/s11600-013-0149-6

Download citation

Key words

  • dissolution
  • karst formation
  • hydrology