Skip to main content

Bayesian approach to tomographic imaging of rock-mass velocity heterogeneities

Abstract

Detailed imaging of the Earth subsurface structure has both scientific and practical aspects. From a scientific point of view knowledge of the Earth’s structure is necessary for understanding various processes. Practical aspects include such issues as localization and description of natural resources deposits. Although huge progress has been made in this field, there are still a lot of questions not answered yet. One of them is the question of a relation between observed seismicity and the earth’s structure. In this paper we address this issue and argue that the probabilistic (Bayesian) approach should be used. Since this inversion method introduces some additional complexity to the already difficult seismic tomography technique, we decided to describe the basic steps of Bayesian tomographic imaging from data preparation to analysis of imaging results. The methodological considerations are illustrated by examples of imaging for four mining regions within the Rudna (Poland) copper mine.

This is a preview of subscription content, access via your institution.

References

  1. Aki, K., and P.G. Richards (1985), Quantitative Seismology, Freeman and Co., San Francisco.

    Google Scholar 

  2. Ampuero, J.-P., J.-P. Vilotte, and F.J. Sanchez-Sesma (2002), Nucleation of rupture under slip dependent friction law: Simple models of fault zone, J. Geophys. Res. 107,B12, 2324, DOI: 10.1029/2001JB000452.

    Article  Google Scholar 

  3. Backus, G., and J.F. Gilbert (1968), The resolving power of gross Earth data, Geophys. J. R. Astr. Soc. 16,2, 169–205, DOI: 10.1111/j.1365-246X.1968.tb00216.x.

    Article  Google Scholar 

  4. Behounkova, M., H. Cizkova, C. Matyska, D.A. Yuen, and M.S. Wang (2007), Resolution tests of three-dimensional convection models by traveltime tomography: effects of Rayleigh number and regular versus irregular parametrization, Geophys. J. Int. 170,1, 401–416, DOI: 10.1111/j.1365-246X.2007.03458.x.

    Article  Google Scholar 

  5. Białecki, M., and Z. Czechowski (2013), On one-to-one dependence of rebound parameters on statistics of clusters: exponential and inverse-power distribution out of random domino automaton, J. Phys. Soc. Jpn. 82,1, 014003–014003-9, DOI: 10.7566/JPSJ.82.014003.

    Article  Google Scholar 

  6. Bijwaard, H., W. Spakman, and E. Engdahl (1998), Closing the gap between regional and global travel time tomography, J. Geophys. Res. 103,B12, 30055–30078, DOI: 10.1029/98JB02467.

    Article  Google Scholar 

  7. Bosch, M. (1999), Lithologic tomography: From plural geophysical data to lithology estimation, J. Geophys. Res. 104,B1, 749–766, DOI: 10.1029/1998JB900014.

    Article  Google Scholar 

  8. Bosch, M., C. Barnes, and K. Mosegaard (2000), Multi-step samplers for improving efficiency in probabilistic geophysical inference. In: P.C. Hansen, B.H. Jacobsen, and K. Mosegaard (eds.), Methods and Applications of Inversion, Lecture Notes in Earth Sciences, Vol. 92, Springer, Berlin Heidelberg, 50–67, DOI: 10.1007/BFb0010283.

    Chapter  Google Scholar 

  9. Boschi, L., G. Ekstrom, and B. Kustowski (2004), Multiple resolution surface wave tomography: the Mediterranean basin, Geophys. J. Int. 157,1, 293–304, DOI: 10.1111/j.1365-246X.2004.02194.x.

    Article  Google Scholar 

  10. Bossu, R., J. Grasso, L. Plotnikova, B. Nurtaev, J. Frechet, and M. Moisy (1996), Complexity of intracontinental seismic faultings: the Gazli, Uzbekistan, sequence, Bull. Seismol. Soc. Am. 86,4, 959–971.

    Google Scholar 

  11. Brandt, S. (1999), Data Analysis. Statistical and Computational Methods for Scientists and Engineers, 3rd ed., Springer, New York.

    Google Scholar 

  12. Cardarelli, E., and A. Cerreto (2002), Ray tracing in elliptical anisotropic media using the linear traveltime interpolation (LTI) method applied to traveltime seismic tomography, Geophys. Prospect. 50,1, 55–72, DOI: 10.1046/j.1365-2478.2002.00297.x.

    Article  Google Scholar 

  13. Cattaneo, M., P. Augliera, D. Spallarossa, and C. Eva (1997), Reconstruction of seismogenetic structures by multiplet analysis: an example of Western Liguria, Italy, Bull. Seismol. Soc. Am. 87,4, 971–986.

    Google Scholar 

  14. Cerveny, V. (2001), Seismic Ray Theory, Cambridge University Press, New York.

    Book  Google Scholar 

  15. Chapman, C. (2004), Fundamentals of Seismic Wave Propagation, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  16. Cheng, X., F. Niu, P. Silver, and R. Nadeau (2011), Seismic imaging of scatterer migration associated with the 2004 Parkfield earthquake using waveform data of repeating earthquakes and active sources, Bull. Seismol. Soc. Am. 101,3, 1291–1301, DOI: 10.1785/0120100261.

    Article  Google Scholar 

  17. Cormier, V., and W.-J. Su (1994), Effects of three-dimensional crustal structure on the estimated slip history and ground motion of the Loma Prieta earthquake, Bull. Seismol. Soc. Am. 84,2, 284–294.

    Google Scholar 

  18. Curtis, A. (1999), Optimal experiment design: cross-borehole tomographic examples, Geophys. J. Int. 136,3, 637–650, DOI: 10.1046/j.1365-246x.1999.00749.x.

    Article  Google Scholar 

  19. Curtis, A., and A. Lomax (2001), Prior information, sampling distributions, and the curse of dimensionality, Geophysics 66,2, 372–378, DOI: 10.1190/1.1444928.

    Article  Google Scholar 

  20. Czechowski, Z., and M. Białecki (2012a), Ito equations out of domino cellular automaton with efficiency parameters, Acta Geophys. 60,3, 846–857, DOI: 10.2478/s11600-012-0021-0.

    Article  Google Scholar 

  21. Czechowski, Z., and M. Białecki (2012b), Three-level description of the domino cellular automaton, J. Phys. A: Math. Theor. 45,15, 155101, DOI: 10.1088/1751-8113/45/15/155101.

    Article  Google Scholar 

  22. Dahlen, F., S. Hung, and G. Nolet (2000), Frechet kernels for finite-frequency traveltimes — I. Theory, Geophys. J. Int. 141,1, 157–174, DOI: 10.1046/j.1365-246X.2000.00070.x.

    Article  Google Scholar 

  23. Deal, M., and G. Nolet (1996), Comment on “Estimation of resolution and covariance for large matrix inversions” by J. Zhang and G.A. McMechan, Geophys. J. Int. 127,1, 245–250, DOI: 10.1111/j.1365-246X.1996.tb01548.x.

    Article  Google Scholar 

  24. Deal, M., and G. Nolet (1999), Slab temperature and thickness from seismic tomography: 2. Izu-Bonin, Japan, and Kuril subduction zones, J. Geophys. Res. 104,B12, 28803–28812, DOI: 10.1029/1999JB900254.

    Article  Google Scholar 

  25. Debski, W. (2002), Imaging rock structure using acoustic waves: methods and algorithms. In: Seismogenic Process Monitoring, Balkema, Rotterdam, 309–326.

    Google Scholar 

  26. Debski, W. (2004), Application of Monte Carlo techniques for solving selected seismological inverse problems, Publs. Inst. Geophys. Pol. Acad. Sc. B-34,367, 1–207.

    Google Scholar 

  27. Debski, W. (2008), Estimating the earthquake source time function by Markov Chain Monte Carlo sampling, Pure Appl. Geophys. 165,7, 1263–1287, DOI: 10.1007/s00024-008-0357-1.

    Article  Google Scholar 

  28. Debski, W. (2010a), Probabilistic inverse theory, Adv. Geophys. 52, 1–102, DOI: 10.1016/S0065-2687 (10)52001-6.

    Article  Google Scholar 

  29. Debski, W. (2010b), Seismic tomography by Monte Carlo sampling, Pure Appl. Geophys. 167,1–2, 131–152, DOI: 10.1007/s00024-009-0006-3.

    Article  Google Scholar 

  30. Debski, W., and B. Domanski (2002), An application of the pseudo-spectral technique to retrieving source time function, Acta Geophys. Pol. 50,2, 207–221.

    Google Scholar 

  31. Debski, W., and R. Young (1999), Enhanced velocity tomography: Practical method of combining velocity and attenuation parameters, Geophys. Res. Lett. 26,21, 3253–3256, DOI: 10.1029/1998GL010368.

    Article  Google Scholar 

  32. Debski, W., and R. Young (2002), Tomographic imaging of thermally induced fractures in granite using Bayesian inversion, Pure Appl. Geophys. 159,1–3, 277–307, DOI: 10.1007/978-3-0348-8179-1_13.

    Article  Google Scholar 

  33. Duijndam, A.J.W. (1988), Bayesian estimation in seismic inversion. Part I: Principles, Geophys. Prospect. 36,8, 878–898, DOI: 10.1111/j.1365-2478.1988.tb02198.x.

    Article  Google Scholar 

  34. Eppstein, M.J., and D. Dougherty (1998), Optimal 3-D traveltime tomography, Geophysics 63,3, 1053–1061, DOI: 10.1190/1.1444383.

    Article  Google Scholar 

  35. Fornberg, B. (1996), A Practical Guide to Pseudospectral Methods, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge.

    Google Scholar 

  36. Friedel, M.J., M.J. Jackson, E.M. Williams, M.S. Olson, and E. Westman (1996), Tomographic imaging of coal pillar conditions: Observations and implications, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 33,3, 279–290, DOI: 10.1016/0148-9062 (95)00061-5.

    Article  Google Scholar 

  37. Gibowicz, S.J. (1990), Seismicity induced by mining, Adv. Geophys. 32, 1–74, DOI: 10.1016/S0065-2687 (08)60426-4.

    Article  Google Scholar 

  38. Gibowicz, S.J. (2001), Radiated energy scaling for seismic events induced by mining, Acta Geophys. Pol. 49,1, 95–111.

    Google Scholar 

  39. Gibowicz, S.J. (2009), Seismicity induced by mining: Recent research, Adv. Geophys. 51, 1–53, DOI: 10.1016/S0065-2687 (09)05106-1.

    Article  Google Scholar 

  40. Gibowicz, S.J., and A. Kijko (1994), An Introduction to Mining Seismology, Academic Press, San Diego.

    Google Scholar 

  41. Gilks, W., S. Richardson, and D. Spiegelhalter (1996), Introducing Markov chain Monte Carlo. In: Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC Press, London.

    Chapter  Google Scholar 

  42. Gillespie, D.T. (1992), Markov Processes. An Introduction for Physical Scientists, Academic Press Inc., San Diego.

    Google Scholar 

  43. Guha, S.K. (2000), Induced Earthquakes, Kluwer Acad. Pub., Dordrecht.

    Book  Google Scholar 

  44. Hastings, W.K. (1970), Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57,1, 97–109, DOI: 10.1093/biomet/57.1.97.

    Article  Google Scholar 

  45. Iyer, H.M., and K. Hirahara (1993), Seismic Tomography. Theory and Practice, Chapman & Hall, London.

    Google Scholar 

  46. Jackson, D.D., and M. Matsu’ura (1985), A Bayesian approach to nonlinear inversion, J. Geophys. Res. 90,B1, 581–591, DOI: 10.1029/JB090iB01p00581.

    Article  Google Scholar 

  47. Jeffreys, H. (1983), Theory of Probability, Clarendon Press, Oxford.

    Google Scholar 

  48. Kame, N., J. Rice, and R. Dmowska (2003), Effects of prestress state and rupture velocity on dynamic fault branching, J. Geophys. Res. 108,B5, 2265, DOI: 10.1029/2002JB002189.

    Article  Google Scholar 

  49. Kennett, B., and P. Cummins (2005), The relationship of the seismic source and subduction zone structure for the 2004 December 26 Sumatra-Andaman earthquake, Earth Planet. Sci. Lett. 239,1–2, 1–8, DOI: 10.1016/j.epsl.2005.08.015.

    Article  Google Scholar 

  50. Khan, P.K., and P.P. Chakraborty (2009), Bearing of plate geometry and rheology on shallow-focus mega-thrust seismicity with special reference to 26 December 2004 Sumatra event, J. Asian Earth Sci. 34,3, 480–491, DOI: 10.1016/j.jseaes.2008.07.006.

    Article  Google Scholar 

  51. Kijko, A. (1994), Seismological outliers: L1 or adaptive Lp norm application, Bull. Seismol. Soc. Am. 84,2, 473–477.

    Google Scholar 

  52. Kwiatek, G. (2008), Relative source time functions of seismic events at the Rudna copper mine, Poland: estimation of inversion uncertainties, J. Seismol. 12,4, 499–517, DOI: 10.1007/s10950-008-9100-8.

    Article  Google Scholar 

  53. Latorre, D., J. Virieux, T. Monfret, V. Monteiller, T. Vanorio, J.-L. Got, and H. Lyon-Caen (2004), A new seismic tomography of Aigion area (Gulf of Corinth, Greece) from the 1991 data set, Geophys. J. Int. 159,3, 1013–1031, DOI: 10.1111/j.1365-246X.2004.02412.x.

    Article  Google Scholar 

  54. Leveque, J.-J., L. Rivera, and G. Wittlinger (1993), On the use of the checker-board test to assess the resolution of tomographics inversions, Geophys. J. Int. 115,1, 313–318, DOI: 10.1111/j.1365-246X.1993.tb05605.x.

    Article  Google Scholar 

  55. Mai, P.M., and G.C. Beroza (2002), A spatial random field model to characterize complexity in earthquake slip, J. Geophys. Res. 107,B11, 2308, DOI: 10.1029/2001JB000588.

    Article  Google Scholar 

  56. Maxwell, S.C., and R.P. Young (1992), Sequential velocity imaging and microseismic monitoring of mining-induced stress change, Pure Appl. Geophys. 139,3/4, 421–447, DOI: 10.1007/BF00879945.

    Article  Google Scholar 

  57. Maxwell, S.C., and R.P. Young (1993), A comparison between controlled source and passive source seismic velocity images, Bull. Seismol. Soc. Am. 83,6, 1813–1834.

    Google Scholar 

  58. McGarr, A., and D. Simpson (1997), A broad look at induced and triggered seismicity. In: S.J. Gibowicz and S. Lasocki (eds.), Rockbursts and Seismicity in Mines, Balkema, Rotterdam, 385–396.

    Google Scholar 

  59. Menke, W. (1989), Geophysical Data Analysis: Discrete Inverse Theory, International Geophysics Series, Vol. 45, Academic Press Inc., San Diego.

    Google Scholar 

  60. Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller (1953), Equation of state calculations by fast computing machines, J. Chem. Phys. 21,6, 1087–1092, DOI: 10.1063/1.1699114.

    Article  Google Scholar 

  61. Michelini, A. (1995), An adaptive-grid formalism for traveltime tomography, Geophys. J. Int. 121,2, 489–510, DOI: 10.1111/j.1365-246X.1995.tb05728.x.

    Article  Google Scholar 

  62. Moscoso, E., I. Grevemeyer, E. Contreras-Reyes, E. Flueh, Y. Dzierma, W. Rabbel, and M. Thorwart (2010), Revealing the deep structure and rupture plane of the 2010 Maule, Chile earthquake (Mw = 8.8) using wide angle seismic data, Earth Planet. Sci. Lett. 307,1–2, 147–155, DOI: 10.1016/j.epsl.2011.04.025.

    Google Scholar 

  63. Mosegaard, K., and M. Sambridge (2002), Monte Carlo analysis of invers problems, Inverse Probl. 18,3, R29–45, DOI: 10.1088/0266-5611/18/3/201.

    Article  Google Scholar 

  64. Mosegaard, K., and A. Tarantola (2002), Probabilistic approach to inverse problems. In: International Handbook of Earthquake & Engineering Seismology, Academic Press, San Diego, 237–265.

    Chapter  Google Scholar 

  65. Nolet, G. (ed.) (1987), Seismic Tomography, D. Reidel Publ. Co., Dordrecht.

    Google Scholar 

  66. Nolet, G., and R. Montelli (2005), Optimal parametrization of tomographic models, Geophys. J. Int. 161,2, 365–372, DOI: 10.1111/j.1365-246X.2005.02596.x.

    Article  Google Scholar 

  67. Nolet, G., R. Montelli, and J. Virieux (1999), Explicit, approximate expressions for the resolution and a posteriori covariance of massive tomographic systems, Geophys. J. Int. 138,1, 36–44, DOI: 10.1046/j.1365-246x.1999.00858.x.

    Article  Google Scholar 

  68. Nolet, G., R. Montelli, and J. Virieux (2001), Replay to comment by Z.S. Yao, R.G. Roberts and A. Tryggvason on’ Explicit, approximate expressions for the resolution and a posteriori covariance of massive tomographic systems’, Geophys. J. Int. 145,1, 315, DOI: 10.1111/j.1365-246X.2001.00347.x.

    Article  Google Scholar 

  69. Okada, T., T. Yaginuma, N. Umino, T. Matsuzawa, A. Hasegawa, H. Zhang, and C. Thurber (2006), Detailed imaging of the fault planes of the 2004 Niigata-Chuetsu, central Japan, earthquake sequence by double-difference tomography, Earth Planet. Sci. Lett. 244,1–2, 32–43, DOI: 10.1016/j.epsl.2006.02.010.

    Article  Google Scholar 

  70. Parker, R.L. (1994), Geophysical Inverse Theory, Princeton University Press, Princeton.

    Google Scholar 

  71. Pratt, T., J. Dolan, J. Odum, W. Stephenson, R. Williams, and M. Templeton (1998), Multiscale seismic imaging of active fault zones for hazard assessment: a case study of the Santa Monica fault zone, Los Angeles, California, Geophysics 63,2, 479–489, DOI: 10.1190/1.1444349.

    Article  Google Scholar 

  72. Ripperger, J., J.-P. Ampuero, P. Mai, and D. Giardini (2007), Earthquake source characteristics from dynamic rupture with constrained stochastic fault stress, J. Geophys. Res. 112,B4, BO4311, DOI: 10.1029/2006JB004515.

    Article  Google Scholar 

  73. Robert, C.P., and G. Casella (1999), Monte Carlo Statistical Methods, Springer Texts in Statistics, Springer, New York.

    Book  Google Scholar 

  74. Rudzinski, Ł., and W. Debski (2011), Extending the double-difference location technique to mining applications. Part I: Numerical study, Acta Geophys. 59,4, 785–814, DOI: 10.2478/s11600-011-0021-5.

    Article  Google Scholar 

  75. Sambridge, M., and O. Gudmundsson (1998), Tomographic systems of equations with irregular cells, J. Geophys. Res. 103,B1, 773–781, DOI: 10.1029/97JB02602.

    Article  Google Scholar 

  76. Sethian, J.A. (1999), Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, New York, 378 pp.

    Google Scholar 

  77. Spakman, W., and H. Bijwaard (2001), Optimization of cell parameterizations for tomographic inverse problems, Pure Appl. Geophys. 158, 1401–1423, DOI: 10.1007/978-3-0348-8264-4_5.

    Article  Google Scholar 

  78. Tadokoro, K., M. Ando, S. Baris, K. Nishigami, M. Nakamura, S. Ucer, A. Ito, Y. Honkura, and A. Isikara (2002), Monitoring of fault healing after the 1999 Kocaeli, Turkey, earthquake, J. Seismol. 6,3, 411–417, DOI: 10.1023/A:1020091610510.

    Article  Google Scholar 

  79. Tarantola, A. (1987), Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation, Elsevier, Amsterdam.

    Google Scholar 

  80. Tarantola, A. (2005), Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia.

    Book  Google Scholar 

  81. Tarantola, A., and B. Valette (1982), Inverse problems = quest for information, J. Geophys. 50,3, 159–170.

    Google Scholar 

  82. Tierney, L. (1994), Markov chains for exploring posterior distributions (with discussion), Ann. Statist. 22,4, 1701–1762, DOI: 10.1214/aos/1176325750.

    Article  Google Scholar 

  83. Tromp, J., C. Tape, and Q. Liu (2005), Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels, Geophys. J. Int. 160,1, 195–216, DOI: 10.1111/j.1365-246X.2004.02453.x.

    Article  Google Scholar 

  84. Van Avendonk, H.J.A., A.J. Harding, J.A. Orcutt, and J.S. McClain (1998), A twodimensional tomographic study of the Clipperton transform fault, J. Geophys. Res. 103,B8, 17885–17899, DOI: 10.1029/98JB00904.

    Article  Google Scholar 

  85. Vesnaver, A.L. (1996), Irregular grids in seismic tomography and minimum-time ray tracing, Geophys. J. Int. 126,1, 147–165, DOI: 10.1111/j.1365-246X.1996.tb05274.x.

    Article  Google Scholar 

  86. Wang, Z., and D. Zhao (2006), Seismic images of the source area of the 2004 Mid-Niigata prefecture earthquake in Northeast Japan, Earth Planet. Sci. Lett. 244,1–2, 16–31, DOI: 10.1016/j.epsl.2006.02.015.

    Article  Google Scholar 

  87. Wiejacz, P., and W. Debski (2001), New observation of Gulf of Gdansk seismic events, Phys. Earth Planet. In. 123,2–4, 233–245, DOI: 10.1016/S0031-9201(00)00212-0.

    Article  Google Scholar 

  88. Yamamoto, Y., R. Hino, M. Nishino, T. Yamada, T. Kanazawa, T. Hashimoto, and G. Aoki (2006), Three-dimensional seismic velocity structure around the focal area of the 1978 Miyagi-Oki earthquake, Geophys. Res. Lett. 33,10, L10308, DOI: 10.1029/2005GL025619.

    Article  Google Scholar 

  89. Yao, Z.S., R.G. Roberts, and A. Tryggvason (1999), Calculating resolution and covariance matrices for seismic tomography with the LSQR method, Geophys. J. Int. 138,3, 886–894, DOI: 10.1046/j.1365-246x.1999.00925.x.

    Article  Google Scholar 

  90. Yao, Z.S., R.G. Roberts, and A. Tryggvason (2001), Comment on ‘Explicit, approximate expressions for the resolution and a posteriori covariance of massive tomographic systems’ by G. Nolet, R. Montelli and J. Virieux, Geophys. J. Int. 145,1, 307–314, DOI: 10.1111/j.1365-246X.2001.00346.x.

    Article  Google Scholar 

  91. Zhang, H., and C. Thurber (2005), Adaptive mesh seismic tomography based on tetrahedral and Voronoi diagrams: application to Parkfield, California, J. Geophys. Res. 110,B4, B04303, DOI: 10.1029/2004JB003186.

    Article  Google Scholar 

  92. Zhang, J., and G. McMechan (1995), Estimation of resolution and covariance for large matrix inversions, Geophys. J. Int. 121,2, 409–426, DOI: 10.1111/j.1365-246X.1995.tb05722.x.

    Article  Google Scholar 

  93. Zhang, J., and G. McMechan (1996), Replay to comment by M.M. Deal and G. Nolet on ‘Estimation of resolution and covariance for large matrix inversions’, Geophys. J. Int. 127,1, 251–252, DOI: 10.1111/j.1365-246X.1996.tb01549.x.

    Article  Google Scholar 

  94. Zhao, D. (2001), New advances of seismic tomography and its applications to subduction zones and earthquake fault zones: A review, Island Arc 10,1, 68–84, DOI: 10.1046/j.1440-1738.2001.00291.x.

    Article  Google Scholar 

  95. Zhao, D., H. Kanamori, H. Negishi, and D. Wiens (1996), Tomography of the source area of the 1995 Kobe earthquake: evidence for fluids at the hypocenter? Science 274,5294, 1891–1894, DOI: 10.1126/science.274.5294.1891.

    Article  Google Scholar 

  96. Zhao, D., O. Mishra, and R. Sanda (2002), Influence of fluids and magma on earthquakes: seismological evidence, Phys. Earth Planet. In. 132,4, 249–267, DOI: 10.1016/S0031-9201(02)00082-1.

    Article  Google Scholar 

  97. Zhao, H. (2005), A fast sweeping method for Eikonal equations, Math. Comp. 74, 603–627, DOI: 10.1090/S0025-5718-04-01678-3.

    Article  Google Scholar 

  98. Zollo, A., L. D’Auria, R. De Matteis, A. Herrero, J. Virieux, and P. Gasparini (2002), Bayesian estimation of 2-D P-velocity models from active seismic arrival time data: imaging of the shallow structure of Mt Vesuvius (Southern Italy), Geophys. J. Int. 151,2, 566–582, DOI: 10.1046/j.1365-246X.2002.01795.x.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wojciech Dębski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dębski, W. Bayesian approach to tomographic imaging of rock-mass velocity heterogeneities. Acta Geophys. 61, 1395–1436 (2013). https://doi.org/10.2478/s11600-013-0148-7

Download citation

Keywords

  • seismic tomography
  • Bayesian inversion
  • MCMC
  • induced seismicity