Skip to main content

Cellular automata to describe seismicity: A review

Abstract

Cellular Automata have been used in the literature to describe seismicity. We first historically introduce Cellular Automata and provide some important definitions. Then we proceed to review the most important models, most of them being variations of the spring-block model proposed by Burridge and Knopoff, and describe the most important results obtained from them. We discuss the relation with criticality and also describe some models that try to reproduce real data.

This is a preview of subscription content, access via your institution.

References

  1. Adamatzky, A., (1994), Identification of Cellular Automata, Taylor and Francis Ltd., London.

    Google Scholar 

  2. Akishin, P.G., M.V. Altaisky, I. Antoniou, A.D. Budnik, and V.V. Ivanov (1998), Simulation of earthquakes with cellular automata, Discrete Dyn. Nat. Soc. 2,4, 267–279, DOI: 10.1155/S1026022698000247.

    Google Scholar 

  3. Aladjev, V.Z. (1971), Computability in the Homogeneous Structures, VINITI Press, Moscow.

    Google Scholar 

  4. Amoroso, S., and Y.N. Patt (1972), Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures, J. Comp. Syst. Sci. 6,5, 448–464, DOI: 10.1016/S0022-0000(72)80013-8.

    Google Scholar 

  5. Bak, P., and K. Chen (1995), Fractal dynamics of earthquakes, In: C.C. Barton and P.R. La Pointe (eds.), Fractals in the Earth Sciences, Plenum Press, New York, 227–236.

    Google Scholar 

  6. Bak, P., and C. Tang (1989), Earthquakes as a self-organized critical phenomenon, J. Geophys. Res. 94,B11, 15635–15637, DOI: 10.1029/JB094iB11p15635.

    Google Scholar 

  7. Bak, P., C. Tang, and K. Wiesenfeld (1987), Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Lett. 59,4, 381–384, DOI: 10.1103/Phys RevLett.59.381.

    Google Scholar 

  8. Bak, P., C. Tang, and K. Wiesenfeld (1988), Self-organized criticality, Phys. Rev. A 38,1, 364–374, DOI: 10.1103/PhysRevA.38.364.

    Google Scholar 

  9. Bak, P., K. Chen, and C. Tang (1990), A forest-fire model and some thoughts on turbulence, Phys. Lett. A 147,5–6, 297–300, DOI: 10.1016/0375-9601(90)90451-S.

    Google Scholar 

  10. Barriere, B., and D.L. Turcotte (1991), A scale-invariant cellular-automata model for distributed seismicity, Geophys. Res. Lett. 18,11, 2011–2014, DOI: 10.1029/91GL02415.

    Google Scholar 

  11. Barriere, B., and D.L. Turcotte (1994), Seismicity and self-organized criticality, Phys. Rev. E 49,2, 1151–1160, DOI: 10.1103/PhysRevE.49.1151.

    Google Scholar 

  12. Belubekian, M.E., and A.S. Kiremidjian (1997), A stochastic automata network for earthquake simulation and hazard estimation, Report No. 124, The John A. Blume Earthquake Engineering Center, Stanford University, USA.

    Google Scholar 

  13. Białecki, M. (2012a), Motzkin numbers out of Random Domino Automaton, Phys. Lett. A 376,45, 3098–3100, DOI: 10.1016/j.physleta.2012.09.022.

    Google Scholar 

  14. Bialecki, M. (2012b), An explanation of the shape of the universal curve of the Scaling Law for the Earthquake Recurrence Time Distributions, arXiv:1210.7142 [physics.geo-ph].

    Google Scholar 

  15. Białecki, M., and Z. Czechowski (2013), On one-to-one dependence of rebound parameters on statistics of clusters: Exponential and inverse-power distributions out of Random Domino Automaton, J. Phys. Soc. Jpn. 82,1, 014003–014003-9, DOI: 10.7566/JPSJ.82.014003.

    Google Scholar 

  16. Białecki, M., and A. Doliwa (2005), Algebro-geometric solution of the discrete KP equation over a finite field out of a hyperelliptic curve, Commun. Math. Phys. 253,1, 157–170, DOI: 10.1007/s00220-004-1207-3.

    Google Scholar 

  17. Bowman, D.D., and G.C.P. King (2001), Accelerating seismicity and stress accumulation before large earthquakes, Geophys. Res. Lett. 28,21, 4039–4042, DOI: 10.1029/2001GL013022.

    Google Scholar 

  18. Brender, R.F. (1970), A programming system for the simulation of cellular spaces, Tech. Rep. 25, CONCOMP, University of Michigan, Ann Arbor, USA.

    Google Scholar 

  19. Bufe, C.G., and D.J. Varnes (1993), Predictive modeling of the seismic cycle of the greater San Francisco Bay region, J. Geophys. Res. 98,B6, 9871–9883, DOI: 10.1029/93JB00357.

    Google Scholar 

  20. Burks, A.W. (1970), Essays on Cellular Automata, University of Illinois Press, Urbana.

    Google Scholar 

  21. Burridge, R., and L. Knopoff (1967), Model and theoretical seismicity, Bull. Seismol. Soc. Am. 57,3, 341–371.

    Google Scholar 

  22. Carlson, J.M., and J.S. Langer (1989a), Mechanical model of an earthquake fault, Phys. Rev. A 40,11, 6470–6484, DOI: 10.1103/PhysRevA.40.6470.

    Google Scholar 

  23. Carlson, J.M., and J.S. Langer (1989b), Properties of earthquakes generated by fault dynamics, Phys. Rev. Lett. 62,22, 2632–2635, DOI: 10.1103/PhysRev-Lett.62.2632.

    Google Scholar 

  24. Carlson, J.M., J.S. Langer, and B.E. Shaw (1994), Dynamics of earthquake faults, Rev. Mod. Phys. 66,2, 657–670, DOI: 10.1103/RevModPhys.66.657.

    Google Scholar 

  25. Castellaro, S., and F. Mulargia (2001), A simple but effective cellular automaton for earthquakes, Geophys. J. Int. 144,3, 609–624, DOI: 10.1046/j.1365-246x.2001.01350.x.

    Google Scholar 

  26. Castellaro, S., and F. Mulargia (2002), What criticality in cellular automata models of earthquakes?, Geophys. J. Int. 150,2, 483–493, DOI: 10.1046/j.1365-246X.2002.01709.x.

    Google Scholar 

  27. Chen, K., P. Bak, and S.P. Obukhov (1991), Self-organized criticality in a crackpropagation model of earthquakes, Phys. Rev. A 43,2, 625–630, DOI: 10.1103/PhysRevA.43.625.

    Google Scholar 

  28. Christensen, K., and Z. Olami (1992), Variation of the Gutenberg-Richter b values and nontrivial temporal correlations in a spring-block model of earthquakes, J. Geophys. Res. 97,B6, 8729–8735, DOI: 10.1029/92JB 00427.

    Google Scholar 

  29. Christensen, K., L. Danon, T. Scanlon, and P. Bak (2002), Unified scaling law for earthquakes, PNAS 99,Suppl. 1, 2509–2513, DOI: 10.1073/pnas.012581099.

    Google Scholar 

  30. Church, A. (1936), A Note on the Entscheidungsproblem, J. Symbolic Logic 1,1, 40–41, DOI: 10.2307/2269326.

    Google Scholar 

  31. Cohen, S.C. (1977), Computer simulation of earthquakes, J. Geophys. Res. 82,26, 3781–3796, DOI: 10.1029/JB082i026p03781.

    Google Scholar 

  32. Czechowski, Z., and M. Białecki (2012a), Three-level description of the domino cellular automaton, J. Phys. A: Math. Theor. 45,15, 155101, DOI: 10.1088/1751-8113/45/15/155101.

    Google Scholar 

  33. Czechowski, Z., and M. Białecki (2012b), Ito equations out of domino cellular automaton with efficiency parameters, Acta Geophys. 60,3, 846–857, DOI: 10.2478/s11600-012-0021-0.

    Google Scholar 

  34. Delorme, M. (1998), An introduction to cellular automata, Research Rep. no. 98-37, École Normale Supérieur de Lyon, Lyon, France.

    Google Scholar 

  35. Dewdney, A.K. (1989), Simulated evolution: wherein bugs learn to hunt bacteria, Sci. Amer. 260,5, 138–141.

    Google Scholar 

  36. Dieterich, J.H. (1972), Time-dependent friction as a possible mechanism for aftershocks, J. Geophys. Res. 77,20, 3771–3781, DOI: 10.1029/JB077i020p03771.

    Google Scholar 

  37. Dieterich, J.H., and K.B. Richards-Dinger (2010), Earthquake recurrence in simulated fault systems, Pure Appl. Geophys. 167,8–9, 1087–1104, DOI: 10.1007/s00024-010-0094-0.

    Google Scholar 

  38. Doliwa, A., M. Białecki, and P. Klimczewski (2003), The Hirota equation over finite fields: algebro-geometric approach and multisoliton solutions, J. Phys. A: Math. Gen. 36,17, 4827–4839, DOI: 10.1088/0305-4470/36/17/309.

    Google Scholar 

  39. Drossel, B., and F. Schwabl (1992a), Self-organized critical forest-fire model, Phys. Rev. Lett. 69,11, 1629–1632, DOI: 10.1103/PhysRevLett.69.1629.

    Google Scholar 

  40. Drossel, B., and F. Schwabl (1992b), Self-organized criticality in a forest-fire model, Physica A 191,1–4, 47–50, DOI: 10.1016/0378-4371(92)90504-J.

    Google Scholar 

  41. Eneva, M., and Y. Ben-Zion (1997), Application of pattern recognition techniques to earthquake catalogs generated by model of segmented fault systems in three-dimensional elastic solids, J. Geophys. Res. 102,B11, 24513–24528, DOI: 10.1029/97JB01857.

    Google Scholar 

  42. Ferguson, C.D., W. Klein, J.B. Rundle, H. Gould and J. Tobochnik (1998), Longrange earthquake fault models, Comput. Phys. 12,1, 34–40, DOI: 10.1063/1.168681.

    Google Scholar 

  43. Fisher, D.S., K. Dahmen, S. Ramanatham, and Y. Ben-Zion (1997), Statistics of earthquakes in simple models of heterogeneous faults, Phys. Rev. Lett. 78,25, 4885–4888, DOI: 10.1103/PhysRevLett.78.4885.

    Google Scholar 

  44. Frish, U., B. Hasslacher, and Y. Pomeau (1986), Lattice-gas automata for the Navier-Stokes equation, Phys. Rev. Lett. 56,14, 1505–1508, DOI: 10.1103/PhysRevLett.56.1505.

    Google Scholar 

  45. Gálvez-Coyt, G., A. Muñoz-Diosdado, and F. Angulo-Brown (2007), Some fractal cellular automata models of seismic faults, Fractals 15,3, 207–215, DOI: 10.1142/S0218348X07003563.

    Google Scholar 

  46. Gardner, M. (1970), Mathematical games: The fantastic combinations of John Conway’s new solitarire game ‘Life’, Sci. Amer. 223,4, 120–123, DOI: 10.1038/scientificamerican1070-120.

    Google Scholar 

  47. Georgoudas, I.G., G.Ch. Sirakoulis, and I. Andreadis (2007a), Modelling earthquake activity features using cellular automata, Math. Comput. Model. 46,1–2, 124–137, DOI: 10.1016/j.mcm.2006.12.029.

    Google Scholar 

  48. Georgoudas, I.G., G.Ch. Sirakoulis, E.M. Scordilis, and I. Andreadis (2007b), A cellular automaton simulation tool for modelling seismicity in the region of Xanthi, Environ. Modell. Softw. 22,10, 1455–1464, DOI: 10.1016/j.envsoft.2006.06.015.

    Google Scholar 

  49. Georgoudas, I.G., G.Ch. Sirakoulis, E.M. Scordilis, and I. Andreadis (2011), Parametric optimisation in a 2-D cellular automata model of fundamental seis mic attributes with the use of genetic algorithms, Adv. Eng. Softw. 42,9, 623–633, DOI: 10.1016/j.advengsoft.2011.04.003.

    Google Scholar 

  50. González, Á., M. Vázquez-Prada, J.B. Gómez, and A.F. Pacheco (2006), A way to synchronize models with seismic faults for earthquake forecasting: Insights from a simple stochastic model, Tectonophysics 424,3–4, 319–334, DOI: 10.1016/j.tecto.2006.03.039.

    Google Scholar 

  51. Greenberg, J.M., and S.P. Hastings (1978), Spatial patterns for discrete models of diffusion in excitable media, SIAM J. Appl. Math. 34,3, 515–523, DOI: 10.1137/0134040.

    Google Scholar 

  52. Greenberg, J.M., B.D. Hassard, and S.P. Hastings (1978), Pattern formation and periodic structures in systems modeled by reaction-diffusion equations, Bull. Am. Math. Soc. 84,6, 1296–1327, DOI: 10.1090/S0002-9904-1978-14560-1.

    Google Scholar 

  53. Hainzl, S., G. Zöller, and J. Kurths (1999), Similar power laws for foreshock and aftershock sequences in a spring-block model for earthquakes, J. Geophys. Res. 104,B4, 7243–7253, DOI: 10.1029/1998JB900122.

    Google Scholar 

  54. Hainzl, S., G. Zöller, and J. Kurths (2000a), Self-organization of spatio-temporal earthquake clusters, Nonlinear Proc. Geophys. 7,1–2, 21–29.

    Google Scholar 

  55. Hainzl, S., G. Zöller, J. Kurths, and J. Zschau (2000b), Seismic quiescence as an indicator for large earthquakes in a system of self-organized criticality, Geophys. Res. Lett. 27,5, 597–600, DOI: 10.1029/1999GL011000.

    Google Scholar 

  56. Hardy, J., O. De Pazzis, and Y. Pomeau (1976), Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions, Phys. Rev. A 13,5, 1949–1961, DOI: 10.1103/PhysRevA.13.1949.

    Google Scholar 

  57. He, J., and M. Li (2010), Cellular automata to study mode-I crack propagation, Proc. Third Int. Symp. on Computer Science and Computational Technology, 14–15 August 2010, Jiaozuo, China, 475–479.

    Google Scholar 

  58. Hedlund, G.A. (1969), Endomorphisms and automorphisms of the shift dynamical system, Math. Syst. Theory 3,4, 320–375, DOI: 10.1007/BF01691062.

    Google Scholar 

  59. Hedlund, G.A., K.I. Appel, and L.R. Welch (1963), All onto functions of span less than or equal to five, Tech. Rep., Communications Research Division.

    Google Scholar 

  60. Henderson, J.R., I.G. Main, C. Maclean, and M.G. Norman (1994), A fracturemechanical cellular automaton model of seismicity, Pure Appl. Geophys. 142,3–4, 545–565, DOI: 10.1007/BF00876054.

    Google Scholar 

  61. Henley, C.L. (1993), Statics of a “self-organized” percolation model, Phys. Rev. Lett. 71,17, 2741–2744, DOI: 10.1103/PhysRevLett.71.2741.

    Google Scholar 

  62. Hetherington, A., and S. Steacy (2007), Fault heterogeneity and earthquake scaling, Geophys. Res. Lett. 34,16, L16310, DOI: 10.1029/2007GL030365.

    Google Scholar 

  63. Hirata, T. (1989), A correlation between the b value and the fractal dimension of earthquakes, J. Geophys. Res. 94,B6, 7507–7514, DOI: 10.1029/JB094iB06p07507.

    Google Scholar 

  64. Hirata, T., and M. Imoto (1991), Multifractal analysis of spatial distribution of microearthquakes in the Kanto region, Geophys. J. Int. 107,1, 155–162, DOI: 10.1111/j.1365-246X.1991.tb01163.x.

    Google Scholar 

  65. Holland, J.H. (1966), Universal spaces: A basis for studies of adaptation. In: E.R. Caianiello (ed.), Automata Theory, Academic Press, New York, 218–230.

    Google Scholar 

  66. Huang, Y., H. Saleur, C. Sammis, and D. Sornette (1998), Precursors, aftershocks, criticality and self-organized criticality, Europhys. Lett. 41,1, 43–48, DOI: 10.1209/epl/i1998-00113-x.

    Google Scholar 

  67. Ito, K., and M. Matsuzaki (1990), Earthquakes as self-organized critical phenomena, J. Geophys. Res. 95,B5, 6853–6860, DOI: 10.1029/JB095iB05p06853.

    Google Scholar 

  68. Iudin, D.I., and A.N. Grigoriev (2003), Cellular automaton model of lithosphere degassing, Nucl. Instrum. Methods A 502,2–3, 736–738, DOI: 10.1016/S0168-9002(03)00561-8.

    Google Scholar 

  69. Jiménez, A., and A.M. Posadas (2006), A Moore’s cellular automaton model to get probabilistic seismic hazard maps for different magnitude releases: A case study for Greece, Tectonophysics 423,1–4, 35–42, DOI: 10.1016/j.tecto.2006.03.030.

    Google Scholar 

  70. Jiménez, A., A.M. Posadas, T. Hirata, and J.M. García (2004), Probabilistic seismic hazard maps from seismicity patterns analysis: the Iberian Peninsula case, Nat. Hazard Earth Syst. Sci. 4,3, 407–416, DOI: 10.5194/nhess-4-407-2004.

    Google Scholar 

  71. Jiménez, A., A.M. Posadas, and J.M. Marfil (2005), A probabilistic seismic hazard model based on cellular automata and information theory, Nonlin. Process. Geophys. 12,3, 381–396, DOI: 10.5194/npg-12-381-2005.

    Google Scholar 

  72. Jiménez, A., K.F. Tiampo, and A.M. Posadas (2007), An Ising model for earthquake dynamics, Nonlin. Process. Geophys. 14,1, 5–15, DOI: 10.5194/npg-14-5-2007.

    Google Scholar 

  73. Jiménez, A., A.M. Posadas, and K.F. Tiampo (2008), Describing seismic pattern dynamics by means of Ising Cellular Automata. In: R.V. Donner and S.M. Barbosa (eds.), Nonlinear Time Series Analysis in the Geosciences, Springer, Berlin Heidelberg, 273–290, DOI: 10.1007/978-3-540-78938-3_12.

    Google Scholar 

  74. Kanki, M., J. Mada, and T. Tokihiro (2012), Discrete integrable equations over finite fields, SIGMA 8,054, DOI: 10.3842/SIGMA.2012.054.

    Google Scholar 

  75. Kari, J. (1994), Reversibility and surjectivity of problems of cellular automata, J. Comp. Syst. Sci. 48,1, 149–182, DOI: 10.1016/S0022-0000(05)80025-X.

    Google Scholar 

  76. Kleene, S.C. (1956), Representation of events in nerve nets and finite automata. In: C.E. Shannon and J. McCarthy (eds.), Automata Studies, Annals of Mathematics Studies, Princeton University Press, Princeton, 3–42.

    Google Scholar 

  77. Klein, W., J.B. Rundle, and C.D. Ferguson (1997), Scaling and nucleation in models of earthquake faults, Phys. Rev. Lett. 78,19, 3793–3796, DOI: 10.1103/PhysRevLett.78.3793.

    Google Scholar 

  78. Kossobokov, V.G., V.I. Keilis-Borok, D.L. Turcotte, and B.D. Malamud (2000), Implications of a statistical physics approach for earthquake hazard assessment and forecasting, Pure Appl. Geophys. 157,11–12, 2323–2349, DOI: 10.1007/PL00001086.

    Google Scholar 

  79. Lahaie, F., and J.R. Grasso (1998), A fluid-rock interaction cellular automaton of volcano mechanics: Application to the Piton de la Fournaise, J. Geophys. Res. 103,B5, 9637–9649, DOI: 10.1029/98JB00202.

    Google Scholar 

  80. Leamy, M.J. (2008), Application of cellular automata modeling to seismic elastodynamics, Int. J. Solids Struct. 45,17, 4835–4849, DOI: 10.1016/j.ijsolstr.2008.04.021.

    Google Scholar 

  81. Leduc, T. (1997), One-dimensional discrete computer model of the subduction erosion phenomenon (plate tectonics process). In: Proc. CESA′98, Symposium in Applied Mathematics and Optimization, April 1998, Nabeul-Hammamet, Tunisia.

    Google Scholar 

  82. Lee, Y.-T., C.-C. Chen, C.-Y. Lin, and S.-C. Chi (2012a), Negative correlation between power-law scaling and Hurst exponents in long-range connective sandpile models and real seismicity, Chaos Soliton. Fract. 45,2, 125–130, DOI: 10.1016/j.chaos.2011.10.009.

    Google Scholar 

  83. Lee, Y.-T., L. Telesca, and C.-C. Chen (2012b), Negative correlation between frequencymagnitude power-law exponent and Hurst coefficient in the Long-Range Connective Sandpile model for earthquakes and for real seismicity, Europhys. Lett. 99,2, 29001, DOI: 10.1209/0295-5075/99/29001.

    Google Scholar 

  84. Lomnitz-Adler, J. (1993), Automaton models of seismic fracture: Constraints imposed by the magnitude-frequency relation, J. Geophys. Res. 98,B10, 17745–17756, DOI: 10.1029/93JB01390.

    Google Scholar 

  85. Main, I. (1996), Statistical physics, seismogenesis, and seismic hazard, Rev. Geophys. 34,4, 433–462, DOI: 10.1029/96RG02808.

    Google Scholar 

  86. Main, I.G., P.G. Meredith, J.R. Henderson, and P.R. Sammonds (1994), Positive and negative feedback in the earthquake cycle: the role of pore fluids on states of criticality in the crust, Ann. Geofis. 37,6, 1461–1479.

    Google Scholar 

  87. McCulloch, W.S., and W. Pitts (1943), A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys. 5,4, 115–133, DOI: 10.1007/BF02478259.

    Google Scholar 

  88. McGinnis, S.A. (2001), On the effects of geometry in discrete element numerical earthquake simulations, Ph.D. Thesis, University of Colorado, Boulder.

    Google Scholar 

  89. Miranda, E.R. (1994), Music composition using cellular automata, Lang. Design 2, 105–107.

    Google Scholar 

  90. Moore, E.F. (1962), Machine models of self-reproduction. In: Mathematical Problems in the Biological Sciences, Proceedings of Symposia in Applied Mathematics, Vol. 14, American Mathematical Society, 17–33.

    Google Scholar 

  91. Morein, G., D.L. Turcotte, and A. Gabrielov (1997), On the statistical mechanics of distributed seismicity, Geophys. J. Int. 131,3, 552–558, DOI: 10.1111/j.1365-246X.1997.tb06599.x.

    Google Scholar 

  92. Mori, T., and H. Kawamura (2005), Simulation study of spatiotemporal correlations of earthquakes as a stick-slip frictional instability, Phys. Rev. Lett. 94,5, 058501, DOI: 10.1103/PhysRevLett.94.058501.

    Google Scholar 

  93. Muñoz-Diosdado, A., F. Angulo-Brown, and J.L. del Río-Correa (2004), Multifractal analysis of a spring-block seismic fault. In: Proc. 13th World Conf. on Earthquake Engineering, 1–6 August 2004, Vancouver, Canada, paper no. 525.

    Google Scholar 

  94. Muñoz-Diosdado, A., A.H. Rudolf-Navarro, and F. Angulo-Brown (2012), Simulation and properties of a non-homogeneous spring-block earthquake model with asperities, Acta Geophys. 60,3, 740–757, DOI: 10.2478/s11600-012-0027-7.

    Google Scholar 

  95. Myhill, J. (1963), The converse of Moore’s Garden-of-Eden theorem, Proc. Am. Math. Soc. 14, 685–686.

    Google Scholar 

  96. Nakanishi, H. (1990), Cellular-automaton model of earthquakes with deterministic dynamics, Phys. Rev. A 41,12, 7086–7089, DOI: 10.1103/PhysRevA.41.7086.

    Google Scholar 

  97. Nakanishi, H. (1991), Statistical properties of the cellular-automaton model for earthquakes, Phys. Rev. A 43,12, 6613–6621, DOI: 10.1103/PhysRevA.43.6613.

    Google Scholar 

  98. Newman, M.E.J. (2011), Complex systems: A survey, Am. J. Phys. 79, 800–810, DOI: 10.1119/1.3590372.

    Google Scholar 

  99. Nishiyama, A., and T. Tokihiro (2011), Construction of an isotropic cellular automaton for a reaction-diffusion equation by means of a random walk, J. Phys. Soc. Jpn. 80,5, 054003, DOI: 10.1143/JPSJ.80.054003.

    Google Scholar 

  100. Ohta, J., and I. Matsuba (1999), Analysis of earthquakes based on a dissipative cellular-automata model, Electron. Comm. Jpn. Pt. III 82,2, 20–27, DOI: 10.1002/(SICI)1520-6440(199902)82:2〈20::AID-ECJC3〉3.0.CO;2-S.

    Google Scholar 

  101. Olami, Z., H.J.S. Feder, and K. Christensen (1992), Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Phys. Rev. Lett. 68,8, 1244–1247, DOI: 10.1103/PhysRevLett.68.1244.

    Google Scholar 

  102. Omori, F. (1895), On the aftershocks of earthquakes, J. Coll. Sci. Imper. Univ. Jpn 7,2, 111–200.

    Google Scholar 

  103. Otsuka, M. (1972), A simulation of earthquake occurrence, Phys. Earth Planet. Inter. 6,4, 311–315, DOI: 10.1016/0031-9201 (72)90015-5.

    Google Scholar 

  104. Paczuski, M., and S. Boettcher (1996), Universality in sandpiles, interface depinning, and earthquake models, Phys. Rev. Lett. 77,1, 111–114, DOI: 10.1103/PhysRevLett.77.111.

    Google Scholar 

  105. Preston, E.F., J. de sa Martins, J.B. Rundle, M. Anghel, and W. Klein (2000), Models of earthquake faults with long-range stress transfer, IEEE Comput. Sci. Eng. 2,3, 34–41, DOI: 10.1109/5992.841794.

    Google Scholar 

  106. Preston, K., and M. Duff (eds.) (1984), Modern Cellular Automata: Theory and Applications, Plenum Press, New York.

    Google Scholar 

  107. Ramos, O. (2010), Criticality in earthquakes. Good or bad for prediction?, Tectonophysics 485,1–4, 321–326, DOI: 10.1016/j.tecto.2009.11.007.

    Google Scholar 

  108. Reid, H.F. (1910), The California earthquake of April 18, 1906: The mechanics of the earthquake, Report of the State Earthquake Investigative Committee, Carnegie Institute, Washington D.C.

    Google Scholar 

  109. Richardson, D. (1972), Tessellations with local transformations, J. Comp. Syst. Sci. 6,5, 373–388, DOI: 10.1016/S0022-0000 (72)80009-6.

    Google Scholar 

  110. Rundle, J.B. (1988), A physical model for earthquakes. 2. Application to southern California, J. Geophys. Res. 93,B6, 6255–6274, DOI: 10.1029/JB093iB 06p06255.

    Google Scholar 

  111. Rundle, J.B., and D.D. Jackson (1977), Numerical simulation of earthquake sequences, Bull. Seismol. Soc. Am. 67,5, 1363–1377.

    Google Scholar 

  112. Rundle, J.B., and W. Klein (1993), Scaling and critical phenomena in a cellular automaton slider-block model for earthquakes, J.Stat. Phys. 72,1/2, 405–412, DOI: 10.1007/BF01048056.

    Google Scholar 

  113. Rundle, J.B., W. Klein, and S. Gross (1996), Dynamics of a travelling density wave model for earthquakes, Phys. Rev. Lett. 76,22, 4285–4288, DOI: 10.1103/PhysRevLett.76.4285.

    Google Scholar 

  114. Rundle, J.B., W. Klein, and S. Gross (1999), Physical basis for statistical patterns in complex earthquake populations: models, predictions and tests, Pure Appl. Geophys. 155,2–4, 575–607, DOI: 10.1007/s000240050278.

    Google Scholar 

  115. Rundle, J.B., W. Klein, K. Tiampo, and S. Gross (2000a), Linear pattern dynamics in nonlinear threshold systems, Phys. Rev. E 61,3, 2418–2431, DOI: 10.1103/PhysRevE.61.2418.

    Google Scholar 

  116. Rundle, J.B., W. Klein, D.L. Turcotte, and B.D. Malamud (2000b), Precursory seismic activation and critical-point phenomena, Pure Appl. Geophys. 157,11–12, 2165–2182, DOI: 10.1007/PL00001079.

    Google Scholar 

  117. Rundle, J.B., P.B. Rundle, W. Klein, J. de sa Martins, K.F. Tiampo, A. Donnellan, and L.H. Kellogg (2002), GEM plate boundary simulations for the plate boundary observatory: A program for understanding the physics of earthquakes on complex fault networks via observations, theory and numerical simulation, Pure Appl. Geophys. 159,10, 2357–2381, DOI: 10.1007/s00024-002-8739-2.

    Google Scholar 

  118. Rundle, J.B., D.L. Turcotte, R. Shcherbakov, W. Klein, and C. Sammis (2003), Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems, Rev. Geophys. 41,4, 1019–1049, DOI: 10.1029/2003RG000135.

    Google Scholar 

  119. Rundle, P.B., J.B. Rundle, K.F. Tiampo, J. de sa Martins, S. McGinnis, and W. Klein (2001), Nonlinear network dynamics on earthquake fault systems, Phys. Rev. Lett. 87,14, 148501, DOI: 10.1103/PhysRevLett.87.148501.

    Google Scholar 

  120. Sammis, C.G., and S.W. Smith (1999), Seismic cycles and the evolution of stress correlation in cellular automaton models of finite fault networks, Pure Appl. Geophys. 155,2–4, 307–334, DOI: 10.1007/s000240050267.

    Google Scholar 

  121. Sarlis, N.V., E.S. Skordas, and P.A. Varotsos (2011), The change of the entropy in natural time under time-reversal in the Olami-Feder-Christensen earthquake model, Tectonophysics, 513,1–4, 49–53, DOI: 10.1016/j.tecto.2011.09.025.

    Google Scholar 

  122. Smalley, R.F., J.-L. Chatelain, D.L. Turcotte, and R. Prévot (1987), A fractal approach to the clustering of earthquakes: Applications to the seismicity of the New Hebrides, Bull. Seismol. Soc. Am. 77,4, 1368–1381.

    Google Scholar 

  123. Smith, A.R. III (1969), Cellular automata theory, Tech. Rep. 2, Stanford Electronics Labs, Stanford University, USA.

    Google Scholar 

  124. Sornette, A., and D. Sornette (1989), Self-organized criticality and earthquakes, Europhys. Lett. 9,3, 197–202, DOI: 10.1209/0295-5075/9/3/002.

    Google Scholar 

  125. Sornette, D., and C.G. Sammis (1995), Complex critical exponents from renormalization group theory of earthquakes: Implications for earthquake predictions, J. Phys. I France 5,5, 607–619, DOI: 10.1051/jp1:1995154.

    Google Scholar 

  126. Sornette, D., P. Davy, and A. Sornette (1990), Structuration of the lithosphere in plate tectonics as a self-organized critical phenomenon, J. Geophys. Res. 95,B11, 17353–17361, DOI: 10.1029/JB095iB11p17353.

    Google Scholar 

  127. Steacy, S.J., and J. McCloskey (1999), Heterogeneity and the earthquake magnitudefrequency distribution, Geophys. Res. Lett. 26,7, 899–902, DOI: 10.1029/1999GL900135.

    Google Scholar 

  128. Steacy, S.J., and C.G. Sammis (1991), An automaton for fractal patterns of fragmentation, Nature 353,6341, 250–252, DOI: 10.1038/353250a0.

    Google Scholar 

  129. Takahashi, D., and J. Satsuma (1990), A soliton cellular automaton, J. Phys. Soc. Jpn. 59,10, 3514–3519, DOI: 10.1143/JPSJ.59.3514.

    Google Scholar 

  130. Tejedor, A., J.B. Gómez, and A.F. Pacheco (2009), Earthquake size-frequency statistics in a forest-fire model of individual faults, Phys. Rev. E 79,4, 046102, DOI: 10.1103/PhysRevE.79.046102.

    Google Scholar 

  131. Toffoli, T. (1984), Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics, Physica D 10,1–2, 117–127, DOI: 10.1016/0167-2789 (84)90254-9.

    Google Scholar 

  132. Toffoli, T., and N. Margolus (1987), Cellular Automata Machines: A New Environment for Modelling, 3rd ed., MIT Press, 259 pp.

    Google Scholar 

  133. Tokihiro, T., D. Takahashi, J. Matsukidaira, and J. Satsuma (1996), From soliton equations to integrable cellular automata through a limiting procedure, Phys. Rev. Lett. 76,18, 3247–3250, DOI: 10.1103/PhysRevLett.76.3247.

    Google Scholar 

  134. Turcotte, D.L. (1997), Fractals and Chaos in Geology and Geophysics, 2nd ed., Cambridge University Press, Cambridge, 398 pp.

    Google Scholar 

  135. Turcotte, D.L. (1999a), Self-organized criticality, Rep. Prog. Phys. 62, 1377–1429, DOI: 10.1088/0034-4885/62/10/201.

    Google Scholar 

  136. Turcotte, D.L. (1999b), Seismicity and self-organized criticality, Phys. Earth Planet. In. 111,3–4, 275–93, DOI: 10.1016/S0031-9201 (98)00167-8.

    Google Scholar 

  137. Turing, A.M. (1965), On computable numbers, with an application to the Entscheidungsproblem. In: M. Davis (ed.), The Undecidable, Raven Press, Hewlett, 115–153 (reprint from Proc. London Mathematical Society, ser. 2, vol. 42 (1936), pp. 230–265; corr. ibid, vol. 43 (1937), pp. 544–546), http://www.abelard.org/turpap2/tp2-ie.asp.

    Google Scholar 

  138. Ulam, S. (1952), Random processes and transformations. In: L.M. Graves, E. Hille, P.A. Smith, and O. Zariski (eds.), Proc. International Congress of Mathematicians, Providence, Rhode Island, 1950, Vol. 2, 264–275.

    Google Scholar 

  139. Upper, D.R. (1997), Theory and algorithms for hidden Markov models and generalized hidden Markov models, Ph.D. Thesis, University of California at Berkeley, USA.

    Google Scholar 

  140. Vere-Jones, D. (2009), Earthquake occurrence and mechanisms, stochastic models for. In: R.A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, Springer, 2555–2581, DOI: 10.1007/978-0-387-30440-3_155.

    Google Scholar 

  141. Von Neumann, J. (1966), Theory of Self-Reproducing Automata, University of Illinois Press, Urbana.

    Google Scholar 

  142. Wang, Y.-C., X.-C. Yin, F.-J. Ke, M.-F. Xia, and K.-Y. Peng (2000), Numerical simulation of rock failure and earthquake process on mesoscopic scale, Pure Appl. Geophys. 157,11–12, 1905–1928, DOI: 10.1007/PL00001067.

    Google Scholar 

  143. Weatherley, D. (2006), Recurrence interval statistics of cellular automaton seismicity models, Pure Appl. Geophys. 163,9, 1933–1947, DOI: 10.1007/s00024-006-0105-3.

    Google Scholar 

  144. Weatherley, D., S.C. Jaumé, and P. Mora (2000), Evolution of stress deficit and changing rates of seismicity in cellular automaton models of earthquake faults, Pure Appl. Geophys. 157,11–12, 2183–2307, DOI: 10.1007/PL00001080.

    Google Scholar 

  145. Weimar, J.R. (1998), Simulation with Cellular Automata, Logos Verlag, Berlin.

    Google Scholar 

  146. Wolfram, S. (1983), Cellular automata, Los Alamos Science 9, 2–27.

    Google Scholar 

  147. Wolfram, S. (1986), Theory and Applications of Cellular Automata, World Scientific.

    Google Scholar 

  148. Wolfram, S. (1993), Cellular Automata and Complexity: Collected Papers, Perseus Publishing.

    Google Scholar 

  149. Yakovlev, G., J.D. Gran, D.L. Turcotte, J.B. Rundle, J.R. Holliday, and W. Klein (2010), A damage-mechanics model for fracture nucleation and propagation, Theor. Appl. Frac. Mech. 53,3, 180–184, DOI: 10.1016/j.tafmec.2010.06.002.

    Google Scholar 

  150. Zuse, K. (1969), Rechnender Raum, Tech. Rep. AZT-70-164-GEMIT, MIT Project MAC (translated as “Calculating space”).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abigail Jiménez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jiménez, A. Cellular automata to describe seismicity: A review. Acta Geophys. 61, 1325–1350 (2013). https://doi.org/10.2478/s11600-013-0144-y

Download citation

Key words

  • Cellular Automata
  • seismicity
  • complex systems
  • discrete models