Skip to main content

Discrimination between stochastic dynamics patterns of ambient noises (Case study for Oni seismic station)

Abstract

Investigation of complex dynamics of ambient seismic noise remains as an important scientific research challenge. In this work we investigated dynamical features of the ambient noises at Oni seismic station, Georgia. We used stochastic model reconstruction method from measured data sets. Seismic records for different time periods around Oni seismic station have been analysed.

It was shown that the dynamics of fluctuations of seismic noise vertical component undergoes essential changes for considered time period from 2005 to 2012. These changes are more noticeable for time periods of preparation and aftershock activity of strong M6.0 earthquake occurred in 2009 in the vicinity of Oni seismic station.

This is a preview of subscription content, access via your institution.

References

  1. Chelidze, T., O. Lursmanashvili, T. Matcharashvili, and M. Devidze (2006), Triggering and synchronization of stick slip: Waiting times and frequencyenergy distribution, Tectonophysics 424,3–4, 139–155, DOI: 10.1016/j.tecto.2006.03.031.

    Article  Google Scholar 

  2. Correig, A.M., M. Urquizu, J. Vila, and R. Macià (2007), Microseism activity and equilibrium fluctuations. In: A.A. Tsonis and J.B. Elsner (eds.), Nonlinear Dynamics in Geosciences, Springer, New York, 69–85, DOI: 10.1007/978-0-387-34918-3_5.

    Chapter  Google Scholar 

  3. Czechowski, Z., and M. Białecki (2012), Ito equations out of domino cellular automaton with efficiency parameters, Acta Geophys. 60,3, 846–857, DOI: 10.2478/s11600-012-0021-0.

    Article  Google Scholar 

  4. Czechowski, Z., and A. Rozmarynowska (2008), The importance of the privilege for appearance of inverse-power solutions in Ito equations, Physica A 387,22, 5403–5416, DOI: 10.1016/j.physa.2008.06.007.

    Article  Google Scholar 

  5. Czechowski, Z., and L. Telesca (2011), The construction of an Ito model for geoelectrical signals, Physica A 390,13, 2511–2519, DOI: 10.1016/j.physa.2011.02.049.

    Article  Google Scholar 

  6. Friedrich, R., S. Siegert, J. Peinke, S. Lück, M. Siefert, M. Lindemann, J. Raethjen, G. Deuschl, and G. Pfister (2000), Extracting model equations from experimental data, Phys. Lett. A 271,3, 217–222, DOI: 10.1016/S0375-9601(00)00334-0.

    Article  Google Scholar 

  7. Gottschall, J., and J. Peinke (2008), On the definition and handling of different drift and diffusion estimates, New J. Phys. 10, 083034, DOI: 10.1088/1367-2630/10/8/083034.

    Article  Google Scholar 

  8. Kapiris, P.G., K.A. Eftaxias, K.D. Nomikos, J. Polygiannakis, E. Dologlou, G.T. Balasis, N.G. Bogris, A.S. Peratzakis, and V.E. Hadjicontis (2003), Evolving towards a critical point: A possible electromagnetic way in which the critical regime is reached as the rupture approaches, Nonlinear Proc. Geophys. 10,6, 511–524, DOI: 10.5194/npg-10-511-2003.

    Article  Google Scholar 

  9. Karamanos, K., D. Dakopoulos, K. Aloupis, A. Peratzakis, L. Athanasopoulou, S. Nikolopoulos, P. Kapiris, and K. Eftaxias (2006), Preseismic electromagnetic signals in terms of complexity, Phys. Rev. E 74,1, 016104, DOI: 10.1103/PhysRevE.74.016104.

    Article  Google Scholar 

  10. Langner, M., J. Peinke, F. Flemisch, M. Baumann, and D. Beckmann (2010), Drift and diffusion based models of driver behavior, Eur. Phys. J. B 76,1, 99–107, DOI: 10.1140/epjb/e2010-00148-8.

    Article  Google Scholar 

  11. Lapenna, V., M. Macchiato, and L. Telesca (1998), 1/fβ fluctuations and selfsimilarity in earthquake dynamics: observational evidences in southern Italy, Phys. Earth Planet. In. 106,1–2, 115–127, DOI: 10.1016/S0031-9201(97)00080-0.

    Article  Google Scholar 

  12. Matcharashvili, T., T. Chelidze, and Z. Javakhishvili (2000), Nonlinear analysis of magnitude and interevent time interval sequences for earthquakes of Caucasian region, Nonlinear Proc. Geophys. 7,1/2, 9–20, DOI: 10.5194/npg-7-9-2000.

    Article  Google Scholar 

  13. Matcharashvili, T., T. Chelidze, Z. Javakhishvili, N. Jorjiashvili, and N. Zhukova (2012), Scaling features of ambient noise at different levels of local seismic activity: A case study for the Oni seismic station, Acta Geophys. 60,3, 809–832, 10.2478/s11600-012-0006-z.

    Article  Google Scholar 

  14. Padhy, S. (2004), Rescaled range fractal analysis of a seismogram for identification of signals from an earthquake, Curr. Sci. India 87,5, 637–641.

    Google Scholar 

  15. Renner, Ch., J. Peinke, and R. Friedrich (2001), Evidence of Markov properties of high frequency exchange rate data, Physica A 298,3–4, 499–520, DOI: 10.1016/S0378-4371(01)00269-2.

    Article  Google Scholar 

  16. Rundle, J.B., D.L. Turcotte, and W. Klein (eds.) (2000), Geocomplexity and the Physics of Earthquakes, Geophys. Monogr. Ser., Vol. 120, American Geophysical Union, Washington, D.C., 284 pp., DOI: 10.1029/GM120.

    Google Scholar 

  17. SESAME (2004), Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations — measurements, processing and interpretation, SESAME European research project WP12 — D23.12, European Commission — Research General Directorate, Project No. EVG1-CT-2000-0026 SESAME.

    Google Scholar 

  18. Siefert, M., A. Kittel, R. Friedrich, and J. Peinke (2003), On a quantitative method to analyze dynamical and measurement noise, Europhys. Lett. 61,4, 466–472, DOI: 10.1209/epl/i2003-00152-9.

    Article  Google Scholar 

  19. Siegert, S., R. Friedrich, and J. Peinke (1998), Analysis of data sets of stochastic systems, Phys. Lett. A 243,5–6, 275–280, DOI: 10.1016/S0375-9601(98)00283-7.

    Article  Google Scholar 

  20. Telesca, L. (2010), Analysis of Italian seismicity by using a nonextensive approach, Tectonophysics 494,1–2, 155–162, DOI: 10.1016/j.tecto.2010.09.012.

    Article  Google Scholar 

  21. Telesca, L., and Z. Czechowski (2012), Discriminating geoelectrical signals measured in seismic and aseismic areas by using Ito models, Physica A 391,3, 809–818, DOI: 10.1016/j.physa.2011.09.006.

    Article  Google Scholar 

  22. Telesca, L., and V. Lapenna (2006), Measuring multifractality in seismic sequences, Tectonophysics 423,1–4, 115–123, DOI: 10.1016/j.tecto.2006.03.023.

    Article  Google Scholar 

  23. Telesca, L., and M. Lovallo (2012), Analysis of seismic sequences by using the method of visibility graph, Europhys. Lett. 97,5, 50002, DOI: 10.1209/0295-5075/97/50002.

    Article  Google Scholar 

  24. Telesca, L., T. Matcharasvili, T. Chelidze, and N. Zhukova (2012), Relationship between seismicity and water level in the Enguri high dam area (Georgia) using the singular spectrum analysis, Nat. Hazards Earth Syst. Sci. 12,8, 2479–2485, DOI: 10.5194/nhess-12-2479-2012.

    Article  Google Scholar 

  25. Webb, S.C. (1998), Broadband seismology and noise under the ocean, Rev. Geophys. 36,1, 105–142, DOI: 10.1029/97RG02287.

    Article  Google Scholar 

  26. Yulmetyev, R., F. Gafarov, P. Hänggi, R. Nigmatullin, and S. Kayumov (2001), Possibility between earthquake and explosion seismogram differentiation by discrete stochastic non-Markov processes and local Hurst exponent analysis, Phys. Rev. E 64,6, 066132, DOI: 10.1103/PhysRevE.64.066132.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Teimuraz Matcharashvili.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Matcharashvili, T., Chelidze, T., Javakhishvili, Z. et al. Discrimination between stochastic dynamics patterns of ambient noises (Case study for Oni seismic station). Acta Geophys. 61, 1659–1676 (2013). https://doi.org/10.2478/s11600-013-0141-1

Download citation

Key words

  • ambient noise
  • earthquake
  • complex dynamics
  • stochastic model reconstruction