Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Application of first-arrival tomography to characterize a quick clay landslide site in Southwest Sweden

  • 233 Accesses

  • 17 Citations

Abstract

First-arrival traveltime tomography was applied to high-resolution seismic data acquired over a known quick-clay landslide scar near the Göta River in southwest Sweden in order to reveal the geometry and physical properties of clay-related normally consolidated sediments. Investigated area proved to be a challenging environment for tomographic imaging because of large P-wave velocity variations, ranging from 500 to 6000 m/s, and relatively steeply-dipping bedrock. Despite these challenges, P-wave velocity models were obtained down to ca. 150 m for two key 2D seismic profiles (each about 500-m long) intersecting over the landslide scar. The models portrait the sandwich-like structure of marine clays and coarse-grained consolidated sediments, but the estimated resolution (20 m) is too small to distinguish thin layers within this structure. Modelled velocity structures match well the results of reflection seismic processing and resistivity tomography available along the same profiles.

This is a preview of subscription content, log in to check access.

References

  1. Barton, N. (2007), Rock Quality, Seismic Velocity, Attenuation and Anisotropy, Taylor & Francis Group, London.

  2. Bastani, M., C. Shan, A. Malehmir, and L. Persson (2012), Correlation between 2D RMT and ERT resistivity models and high-resolution reflection data at a quick clay site in Sweden. In: Proc. 18th European Meeting of Environmental and Engineering Geophysics “Near Surface Geoscience”, 3–5 September 2012, Paris, France (extended abstract).

  3. Flecha, I., D. Martí, R. Carbonell, J. Escuder-Viruete, and A. Pérez-Estaún (2004), Imaging low-velocity anomalies with the aid of seismic tomography, Tectonophysics 388,1–4, 225–238, DOI: 10.1016/j.tecto.2004.04.031.

  4. Grandjean, G., and S. Sage (2004), JaTS: a fully portable seismic tomography software based on Fresnel wavepaths and a probabilistic reconstruction approach, Comput. Geosci. 30,9–10, 925–935, DOI: 10.1016/j.cageo.2004.06.009.

  5. Husen, S., and E. Kissling (2001), Local earthquake tomography between rays and waves: fat ray tomography, Phys. Earth Planet. In. 123,2–4, 127–147, DOI: 10.1016/S0031-9201(00)00206-5.

  6. Khaldoun, A., P. Moller, A. Fall, G. Wegdam, B. De Leeuw, Y. Méheust, J.O. Fossum, and D. Bonn (2009), Quick clay and landslides of clayey soils, Phys. Rev. Lett. 103,18, 188301–188304, DOI: 10.1103/PhysRevLett.103.188301.

  7. Lanz, E., H. Maurer, and A.G. Green (1998), Refraction tomography over a buried waste disposal site, Geophysics 63,4, 1414–1433, DOI: 10.1190/1.1444443.

  8. Löfroth, H., P. Suer, T. Dahlin, V. Leroux, and D. Schälin (2011), Quick clay mapping by resistivity — Surface resistivity, CPTU-R and chemistry to complement other geotechnical sounding and sampling, Report No. 30, Swedish Geotechnical Institute, Linköping.

  9. Lundström, K., R. Larsson, and T. Dahlin (2009), Mapping of quick clay formations using geotechnical and geophysical methods, Landslides 6,1, 1–15, DOI: 10.1007/s10346-009-0144-9.

  10. Malehmir, A. (2012), Ultra high-resolution reflection seismic imaging of quick-clay landslides in south-west Sweden. In: 74th EAGE Conference & Exhibition, 4–7 June 2012, Copenhagen, Denmark, C037 (extended abstract).

  11. Malehmir, A., M. Bastani, C. Krawczyk, M. Gurk, N. Ismail, U. Polom, and L. Persson (2013a), Geophysical assessment and geotechnical investigation of quick-clay landslides — a Swedish case study, Near Surf. Geophys. 11, 341–350, DOI: 10.3997/1873-0604.2013010.

  12. Malehmir, A., M.U. Saleem, and M. Bastani (2013b), High-resolution reflection seismic investigations of quick-clay and associated formations at a landslide scar in southwest Sweden, J. Appl. Geophys. 92, 84–102, DOI: 10.1016/j.jappgeo.2013.02.013.

  13. Malinowski, M., S. Operto, and A. Ribodetti (2011), High-resolution seismic attenuation imaging from wide-aperture onshore data by visco-acoustic frequency-domain full-waveform inversion, Geophys. J. Int. 186,3, 1179–1204, DOI: 10.1111/j.1365-246X.2011.05098.x.

  14. Martí, D., R. Carbonell, I. Flecha, I. Palomeras, J. Font-Capó, E. Vázquez-Suñé, and A. Pérez-Estaún (2008), High-resolution seismic characterization in an urban area: Subway tunnel construction in Barcelona, Spain, Geophysics 73,2, B41–B50, DOI: 10.1190/1.2832626.

  15. Operto, S. (2005), Documentation for FWM2D/FWT2D programs: 2D acoustic frequency-domain waveform modelling/tomography, SEISCOPE Project, Tech. Rep.

  16. Paige, C.C., and M.A. Saunders (1982), LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software 8,1, 43–71, DOI: 10.1145/355984.355989.

  17. Podvin, P., and I. Lecomte (1991), Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools, Geophys. J. Int. 105,1, 271–284, DOI: 10.1111/j.1365-246X.1991.tb03461.x.

  18. Rankka, K., Y. Andersson-Sköld, C. Hultén, R. Larsson, V. Leroux, and T. Dahlin (2004), Quick clay in Sweden, Report No. 65, Swedish Geotechnical Institute, Linköping.

  19. Ravaut, C., S. Operto, L. Improta, J. Virieux, A. Herrero, and P. Dell’Aversana (2004), Multiscale imaging of complex structures from multifold wideaperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt, Geophys. J. Int. 159,3, 1032–1056, DOI: 10.1111/j.1365-246X.2004.02442.x.

  20. Rawlinson, N., and M. Sambridge (2003), Seismic traveltime tomography of the crust and lithosphere, Adv. Geophys. 46, 81–198, DOI: 10.1016/S0065-2687(03)46002-0.

  21. Stockwell, J.W. Jr. (1999), The CWP/SU: Seismic Un*x package, Comput. Geosci. 25,4, 415–419, DOI: 10.1016/S0098-3004(98)00145-9.

  22. Toomey, D.R., S.C. Solomon, and G.M. Purdy (1994), Tomographic imaging of the shallow crustal structure of the East Pacific Rise at 9°30′N, J. Geophys. Res. 99,B12, 24135–24157, DOI: 10.1029/94JB01942.

  23. Yordkayhun, S., A. Tryggvason, B. Norden, C. Juhlin, and B. Bergman (2009), 3D seismic traveltime tomography imaging of the shallow subsurface at the CO2SINK project site, Ketzin, Germany, Geophysics 74,1, G1–G15, DOI: 10.1190/1.3026553.

  24. Zelt, C.A., A. Azaria, and A. Levander (2006), 3D seismic refraction traveltime tomography at a groundwater contamination site, Geophysics 71,5, H67–H78, DOI: 10.1190/1.2258094.

  25. Zhao, D., A. Hasegawa, and S. Horiuchi (1992), Tomographic imaging of P and S wave velocity structure beneath northeastern Japan, J. Geophys. Res. 97,B13, 19909–19928, DOI: 10.1029/92JB00603.

Download references

Author information

Correspondence to Anna Adamczyk.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Adamczyk, A., Malinowski, M. & Malehmir, A. Application of first-arrival tomography to characterize a quick clay landslide site in Southwest Sweden. Acta Geophys. 61, 1057–1073 (2013). https://doi.org/10.2478/s11600-013-0136-y

Download citation

Key words

  • seismic tomography
  • near-surface
  • seismic imaging
  • landslides