Skip to main content

Cosmic factors influence on the inter-annual variations of the green 557.7 Nm line and red 630.0 Nm line nightglow intensities and their possible coupling with cloud covering at Abastumani (41.75°N, 42.82°E)

Abstract

We studied the inter-annual distributions of the nightglow intensities of the thermosphere atomic oxygen red 630.0 nm and green 557.7 nm lines observed from Abastumani during cloudless nights, the planetary geomagnetic Ap index, solar F10.7, and galactic cosmic rays (GCRs) flux. It is demonstrated that: on magnetically weakly disturbed/ quiet conditions (Ap < 12) in equinoctial months the red line intensities are minimal, while those of the green line are maximal; the red line intensity increases in May-July and is comparatively low in June, where, unlike most mid-latitude regions, the green line intensity is maximal. The red and green line intensities increase with growing solar activity but their behaviors stay the same, which is considered as a possible regional manifestation of lower and upper atmosphere vertical coupling. It was also detected that, for cloudless nights in June, the number of magnetically disturbed day-nights is maximal and the decrease of the GCRs flux is the biggest during a year.

This is a preview of subscription content, access via your institution.

References

  1. Barth, C.A. (1961), The 5577-angstrom airglow, Science 134, 1426.

    Google Scholar 

  2. Bencze, P. (2009), Geographical distribution of long-term changes in the height of the maximum electron density of the F region: A nonmigrating-tide effect?, J. Geophys. Res. 114,A6, A06304, DOI: 10.1029/2008JA013492.

    Article  Google Scholar 

  3. Bilitza, D., and B.W. Reinisch (2008), International Reference Ionosphere 2007: Improvements and new parameters, Adv. Space Res. 42,4, 599–609, DOI: 10.1016/j.asr.2007.07.048.

    Article  Google Scholar 

  4. Carslaw, K. (2009), Atmospheric physics: Cosmic rays, clouds and climate, Nature 460,7253, 332–333, DOI: 10.1038/460332a.

    Article  Google Scholar 

  5. Hines, C.O. (1974), The Upper Atmosphere in Motion, Geophysical Monograph Series, Vol. 18, AGU, Washington, 1027 pp.

    Book  Google Scholar 

  6. Didebulidze, G.G., S.P. Chilingarashvili, T.I. Toroshelidze, I.G. Murusidze, N.D. Kvavadze, and Z.S. Sharadze (2002), On the possibility of in situ shear excitation of vortical perturbations and their coupling with short-period gravity waves by airglow and ionosphere observations, J. Atmos. Sol.-Terr. Phys. 64,8–11, 1105–1116, DOI: 10.1016/S1364-6826(02)00061-5.

    Article  Google Scholar 

  7. Didebulidze, G.G., L.N. Lomidze, N.B. Gudadze, and M. Todua (2009), Multilayered structures in the ionosphere F2 region and impulse-like increase of the nightglow red 630 nm line intensity as a result of influence of shear excited atmospheric vortical perturbations, J. Geophys. Res. 114,A3, A03312, DOI: 10.1029/2008JA013348.

    Article  Google Scholar 

  8. Didebulidze, G.G., L.N. Lomidze, N.B. Gudadze, A.D. Pataraya, and M. Todua (2011), Long-term changes in the nightly behavior of the oxygen red 630.0 nm line nightglow intensity and trends in the thermospheric meridional wind velocity, Int. J. Remote Sens. 32,11, 3093–3114, DOI: 10.1080/01431161.2010.541523.

    Article  Google Scholar 

  9. Dorman, L. (2009), Cosmic Rays in Magnetospheres of the Earth and Other Planets, Astrophysics and Space Science Library, Vol. 358, Springer, 770 pp., DOI: 10.1007/978-1-4020-9239-8.

    Google Scholar 

  10. Fishkova, L.M. (1983), The Night Airglow of the Earth Mid-latitude Upper Atmosphere, Metsniereba Publ. House, Tbilisi (in Russian).

    Google Scholar 

  11. Givishvili, G.V., L.N. Leshchenko, E.V. Lysenko, S.P. Perov, A.I. Semenov, N.P. Sergeenko, L.M. Fishkova, and N.N. Shefov (1996), Long-term trends of some characteristics of the Earth’s atmosphere. Experimental results, Izvestia AN Fiz. Atm. Okean. 32,3, 329–339 (in Russian).

    Google Scholar 

  12. Gray, L.J., J. Beer, M. Geller, J.D. Haigh, M. Lockwood, K. Matthes, U. Cubasch, D. Fleitmann, G. Harrison, L. Hood, J. Luterbacher, G.A. Meehl, D. Shindell, B. van Geel, and W. White (2010), Solar influences on climate, Rev. Geophys. 48,4, RG4001, DOI: 10.1029/2009RG000282.

    Article  Google Scholar 

  13. Gudadze, N.B., G.G. Didebulidze, G.Sh. Javakhishvili, M.G. Shepherd, and M.V. Var- dosanidze (2007), Long-term variations of the oxygen red 630 nm line night-glow intensity, Canadian J. Phys. 85,2, 189–198, DOI: 10.1139/P07-032.

    Article  Google Scholar 

  14. Gudadze, N.B., G.G. Didebulidze, L.N. Lomidze, G.Sh. Javakhishvili, M.A. Marsagishvili, and M. Todua (2008), Different long-term trends of the oxygen red 630.0 nm line nightglow intensity as the result of lowering the ionosphere F2 layer, Ann. Geophys. 26,8, 2069–2080, DOI: 10.5194/angeo-26-2069-2008.

    Article  Google Scholar 

  15. Hedin, A.E., M.A. Biondi, R.G. Burnside, G. Hernandez, R.M. Johnson, T.L. Killeen, C. Mazaudier, J.W. Meriwether, J.E. Salah, R.J. Sica, R.W. Smith, N.W. Spencer, V.B. Wickwar, and T.S. Virdi (1991), Revised global model of thermosphere winds using satellite and ground-based observations, J. Geophys. Res. 96,A5, 7657–7688, DOI: 10.1029/91JA00251.

    Article  Google Scholar 

  16. Khomich, V.Yu., A.I. Semenov, and N.N. Shefov (2008), Airglow as an Indicator of Upper Atmospheric Structure and Dynamics, Springer, Berlin Heidelberg.

    Google Scholar 

  17. Kudela, K., and R. Brenkus (2004), Cosmic ray decreases and geomagnetic activity: list of events 1982–2002, J. Atmos. Sol.-Terr. Phys. 66,13-14, 1121–1126, DOI: 10.1016/j.jastp.2004.05.007.

    Article  Google Scholar 

  18. Laštovička, J., A.V. Mikhailov, T. Ulich, J. Bremer, A.G. Elias, N. Ortiz de Adler, V. Jara, R. Abarca del Rio, A.J. Foppiano, E. Ovalle, and A.D. Danilov (2006), Long-term trends in foF2: A comparison of various methods, J. Atmos. Sol.-Terr. Phys. 68,17, 1854–1870, DOI: 10.1016/j.jastp.2006.02.009.

    Article  Google Scholar 

  19. Legrand, J.P., and P.A. Simon (1989), Solar cycle and geomagnetic activity: A review for geophysicists. Part I. The contributions to geomagnetic activity of shock waves and of the solar wind, Ann. Geophys. 7,6, 565–578.

    Google Scholar 

  20. Marsh, N., and H. Svensmark (2000), Low cloud properties influenced by cosmic rays, Phys. Rev. Lett. 85,23, 5004–5007, DOI: 10.1103/PhysRevLett.85.5004.

    Article  Google Scholar 

  21. McDade, I.C., D.P. Murtagh, R.G.H. Greer, P.H.G. Dickinson, G. Witt, J. Stegman, E.J. Llewellyn, L. Thomas, and D.B. Jenkins (1986), ETON 2: Quenching parameters for the proposed precursors of O2(b 1Σ +g ) and O(1S) in the terrestrial nightglow, Planet. Space Sci. 34,9, 789–800, DOI: 10.1016/ 0032-0633(86)90075-9.

    Article  Google Scholar 

  22. Megrelishvili, T.G. (1981), Regularities of the Variations of the Scattered Light and Emission of the Earth’s Twilight Atmosphere, Metsniereba Publ. House, Tbilisi, 273 pp. (in Russian).

    Google Scholar 

  23. Picone, J.M., A.E. Hedin, D.P. Drob, and A.C. Aikin (2002), NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res. 107,A12, SIA 15-1–SIA 15-16, DOI: 10.1029/2002JA009430.

    Article  Google Scholar 

  24. Roble, R.G., and R.E. Dickinson (1989), How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?, Geophys. Res. Lett. 16,12, 1441–1444, DOI: 10.1029/GL016i012p01441.

    Article  Google Scholar 

  25. Russell, C.T., and R.L. McPherron (1973), Semiannual variation of geomagnetic activity, J. Geophys. Res. 78,1, 92–108, DOI: 10.1029/JA078i001p00092.

    Article  Google Scholar 

  26. Shepherd, G.G., G. Liu, and R.G. Roble (2005), Large-scale circulation of atomic oxygen in the upper mesosphere and lower thermosphere, Adv. Space Res. 35,11, 1945–1950, DOI: 10.1016/j.asr.2004.12.036.

    Article  Google Scholar 

  27. Shepherd, G.G., J. Stegman, P. Espy, C. McLandress, G. Thuillier, and R.H. Wiens (1999), Springtime transition in lower thermospheric atomic oxygen, J. Geophys. Res. 104,A1, 213–223, DOI: 10.1029/98JA02831.

    Article  Google Scholar 

  28. Semeter, J., M. Mendillo, J. Baumgardner, J. Holt, D.E. Hunton, and V. Eccles (1996), A study of oxygen 6300 ? airglow production through chemical modification of the nighttime ionosphere, J. Geophys. Res. 101,A9, 19683–19699, DOI: 10.1029/96JA01485.

    Article  Google Scholar 

  29. Svensmark, H., and E. Friis-Christensen (1997), Variation of cosmic ray flux and global cloud coverage — a missing link in solar-climate relationships, J. Atmos. Sol.-Terr. Phys. 59,11, 1225–1232, DOI: 10.1016/S1364-6826(97)00001-1.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maya Todua.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Todua, M., Didebulidze, G.G. Cosmic factors influence on the inter-annual variations of the green 557.7 Nm line and red 630.0 Nm line nightglow intensities and their possible coupling with cloud covering at Abastumani (41.75°N, 42.82°E). Acta Geophys. 62, 381–399 (2014). https://doi.org/10.2478/s11600-013-0122-4

Download citation

Key words

  • airglow
  • lower and upper atmosphere-ionosphere coupling
  • solar and geomagnetic activity
  • galactic cosmic rays