Skip to main content

Assessment of NeQuick ionospheric model for Galileo single-frequency users

Abstract

The ionosphere is the main error source in GNSS measurements and in extreme cases can degrade the positioning significantly, with errors exceeding 100 m; therefore, modelling and predicting of this type of error is crucial and critical. The ionospheric effect can be reduced using different techniques, such as dual-frequency receiver or suitable augmentation system (DGPS, SBAS); the aforesaid approaches involve the use of expensive devices and/or complex architectures. Single frequency stand-alone receivers are the cheapest and most widespread GNSS devices; they can estimate and partially correct the error due to the ionosphere, through adequate algorithms, which use parameters broadcasted by the navigation message. The aim of this paper is performance assessment of the ionospheric model NeQuick, adopted by the European GNSS Galileo for single frequency receivers. The analysis is performed in measurements domain and the data are collected in different geographical locations and in various geomagnetic conditions.

This is a preview of subscription content, access via your institution.

References

  1. Angrisano, A., S. Gaglione, C. Gioia, U. Robustelli, and M. Vultaggio (2012), GIOVE satellites pseudorange error assessment, J. Navigation 65,1, 29–40, DOI: 10.1017/S0373463311000270.

    Article  Google Scholar 

  2. Azpilicueta, F., B. Nava, P. Coïsson, C. Brunini, and S.M. Radicella (2003), Optimized NeQuick ionospheric model for point positioning. In: Proc. Inter. Symp. on GPS/GNSS, 15-18 November 2003, Tokyo, Japan.

    Google Scholar 

  3. Bassiri, S., and G.A. Hajj (1992), Modeling the GPS signal propagation through the ionosphere, TDA Progress Report 42-110.

    Google Scholar 

  4. Bidaine, B., M. Lonchay, and R. Warnant (2013), Galileo single frequency ionospheric correction: performances in terms of position, GPS Solut. 17,1, 63–73, DOI: 10.1007/s10291-012-0261-0.

    Article  Google Scholar 

  5. Bilitza, D., and B.W. Reinisch (2008), International Reference Ionosphere 2007: Improvements and new parameters, J. Adv. Space Res. 42,4, 599–609, DOI: 10.1016/j.asr.2007.07.048.

    Article  Google Scholar 

  6. Blaunstein, N., and E. Plohotniuc (2008), Ionosphere and Applied Aspects of Radio Communication and Radar, CRC Press, Taylor & Francis Group, New York.

    Book  Google Scholar 

  7. Brent, R.P. (1973), Algorithms for Minimization without Derivatives, Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  8. Coïsson, P., S.M. Radicella, R. Leitinger, and B. Nava (2006), Topside electron density in IRI and NeQuick: Features and limitations, Adv. Space. Res. 37,5, 937–942, DOI: 10.1016/j.asr.2005.09.015.

    Article  Google Scholar 

  9. Daniell, R.E., L.D. Brown, D.N. Anderson, M.W. Fox, P.H. Doherty, D.T. Decker, J.J. Sojka, and R.W. Schunk (1995), Parameterized ionospheric model: A global ionospheric parameterization based on first principles models, Radio Sci. 30,5, 1499–1510, DOI: 10.1029/95RS01826.

    Article  Google Scholar 

  10. Di Giovanni, G., and S.M. Radicella (1990), An analytical model of the electron density profile in the ionosphere, Adv. Space Res. 10,11, 27–30, DOI: 10.1016/0273-1177(90)90301-F.

    Article  Google Scholar 

  11. Gaglione, S., A. Angrisano, G. Pugliano, U. Robustelli, R. Santamaria, and M. Vultaggio (2011), A stochastic sigma model for GLONASS satellite pseudorange, Appl. Geomat. 3,1, 49–57, DOI: 10.1007/s12518-011-0046-0.

    Article  Google Scholar 

  12. Hargreaves, J.K. (1992), The Solar-Terrestrial Environment, Cambridge Atmospheric and Space Science Series, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  13. Hochegger, G., B. Nava, S. Radicella, and R. Leitinger (2000), A family of ionospheric models for different uses, Phys. Chem. Earth C 25,4, 307–310, DOI: 10.1016/S1464-1917(00)00022-2.

    Google Scholar 

  14. Hoffmann-Wellenhof, B., H. Lichtenegger, and J. Collins (1992), Global Positioning System: Theory and Practice, Springer, New York.

    Book  Google Scholar 

  15. IS-GPS-200 (2004), Navstar GPS space segment/navigation user interfaces, Revision D, ARINC Research Corporation, El Segundo, USA.

    Google Scholar 

  16. Kaplan, E.D., J.L. Leva, D. Milbert, and M.S. Pavloff (2006), Fundamentals of satellite navigation. In: E.D. Kaplan and C.J. Hegarty (eds.), Understanding GPS. Principles and Applications, 2nd ed., Artech House Inc., Norwood, 21–65.

    Google Scholar 

  17. Klobuchar, J.A. (1987), Ionospheric time-delay algorithm for single-frequency GPS users, IEEE Trans. Aerospace Electron. Sys. AES-23,3, 325–331.

    Article  Google Scholar 

  18. Leitinger, R., M.L. Zhang, and S.M. Radicella (2005), An improved bottomside for the ionospheric electron density model NeQuick, Ann. Geophys. 48,3, 525–534.

    Google Scholar 

  19. Liu, J., R. Chen, Z. Wang, and H. Zhang (2011), Spherical cap harmonic model for mapping and predicting regional TEC, GPS Solut. 15,2, 109–119, DOI: 10.1007/s10291-010-0174-8.

    Article  Google Scholar 

  20. Llewllyn, S.K., and R.B. Bent (1973), Documentation and description of the Bent ionospheric model, SAMSO Technical Report 73-252.

    Google Scholar 

  21. Massaro, M. (2011), Confronto tra modelli ionosferici nel posizionamento GNSS in singola frequenza, M.Sc. Thesis, “Parthenope” University of Naples, Naples, Italy (in Italian).

    Google Scholar 

  22. Memarzadeh, Y. (2009), Ionospheric modeling for precise GNSS applications, Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands.

    Google Scholar 

  23. Menvielle, M., and A. Berthelier (1991), The K-derived planetary indices: Description and availability, Rev. Geophys. 29,3, 415–432, DOI: 10.1029/91RG00994.

    Article  Google Scholar 

  24. Nava, B., P. Coïsson, G.M. Amarante, F. Azpilicueta, and S.M. Radicella (2005), A model assisted ionospheric electron density reconstruction method based on vertical TEC data ingestion, Ann. Geophys. 48,2, 313–320.

    Google Scholar 

  25. Nava, B., P. Coïsson, and S.M. Radicella (2008), A new version of the NeQuick ionosphere electron density model, J. Atmos. Solar-Terr. Phys. 70,15, 1856–1862, DOI: 10.1016/j.jastp.2008.01.015.

    Article  Google Scholar 

  26. Parkinson, B.W. (1996), GPS error analysis. In: B.W. Parkinson and J.J. Spilker (eds.), Global Positioning System: Theory and Applications, American Institute of Aeronautics and Astronautics Inc., Washington, 469–483.

    Chapter  Google Scholar 

  27. Petit, G., and B. Luzum (2010), IERS conventions (2010), IERS Technical Note No. 36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt, 137–150.

    Google Scholar 

  28. Radicella, S.M. (2009), The NeQuick model genesis, uses and evolution, Ann. Geophys. 52,3/4, 417–422.

    Google Scholar 

  29. Radicella, S.M., and R. Leitinger (2001), The evolution of the DGR approach to model electron density profiles, Adv. Space Res. 27,1, 35–40, DOI: 10.1016/S0273-1177(00)00138-1.

    Article  Google Scholar 

  30. Radicella, S.M., and M.L. Zhang (1995), The improved DGR analytical model of electron density height profile and total electron content in the ionosphere, Ann. Geophys. 38,1, 35–41.

    Google Scholar 

  31. Radicella, S.M., R. Leitinger, B. Nava, and P. Coïsson (2003), A flexible 3D ionospheric model for satellite navigation applications. In: Proc. Int. Symp. on GPS/GNSS, Tokyo, Japan, 2003, 305–310.

    Google Scholar 

  32. Rawer, K. (1963), Propagation of decameter waves (h.f. band). In: B. Landmark (ed.), Meteorological and Astronomical Influences on Radio Wave Propagation, Pergamon Press Inc., Oxford.

    Google Scholar 

  33. Rawer, K. (1982), Replacement of the present sub-peak plasma density profile by a unique expression, Adv. Space Res. 2,10, 183–190, DOI: 10.1016/0273-1177(82)90387-8.

    Article  Google Scholar 

  34. Schaer, S., W. Gurtner, and J. Feltens (1998), IONEX: The IONosphere map eXchange, format version 1. In: Proc. IGS AC Workshop, 9–11 February 1998, Darmstadt, Germany.

    Google Scholar 

  35. Schluter, S., Y. Beniquel, C. Bourga, B. Arbesser-Rastburg, N. Jakowski, F. Amarillo, D. Klahn, and T. Noack (2004), Ionosphere related contribution of the atmospheric processing and assessment facility to gstb-v1. In: Proc. European Navigation Conference, 16-19 May 2004, Rotterdam, The Netherlands.

    Google Scholar 

  36. SIS-ICD (2006), Galileo Open Service Signal, Space Interface Control Document, SISICD-2006, European Space Agency.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Salvatore Gaglione.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Angrisano, A., Gaglione, S., Gioia, C. et al. Assessment of NeQuick ionospheric model for Galileo single-frequency users. Acta Geophys. 61, 1457–1476 (2013). https://doi.org/10.2478/s11600-013-0116-2

Download citation

Key words

  • GNSS
  • Galileo
  • ionospheric models
  • NeQuick
  • Klobuchar