Skip to main content

From statistics of avalanches to microscopic dynamics parameters in a toy model of earthquakes

Abstract

A toy model of earthquakes — Random Domino Automaton — is investigated in its finite version. A procedure of reconstruction of intrinsic dynamical parameters of the model from produced statistics of avalanches is presented. Examples of exponential, inverse-power and M-shape distributions of avalanches illustrate remarkable flexibility of the model as well as the efficiency of proposed reconstruction procedure.

This is a preview of subscription content, access via your institution.

References

  1. Barbot, S., N. Lapusta, and J.-P. Avouac (2012), Under the hood of the earthquake machine: Toward predictive modeling of the seismic cycle, Science 336,6082, 707–710, DOI: 10.1126/science.1218796.

    Article  Google Scholar 

  2. Bhattacharyya, P., and B.K. Chakrabarti (eds.) (2006), Modelling Critical and Catastrophic Phenomena in Geoscience, Lecture Notes in Physics, vol. 705, Springer, Berlin.

    Google Scholar 

  3. Białecki, M. (2012a), An explanation of the shape of the universal curve of the Scaling Law for the Earthquake Recurrence Time Distributions, arXiv:1210.7142 [physics.geo-ph].

    Google Scholar 

  4. Białecki, M. (2012b), Finite Random Domino Automaton, arXiv:1208.5886 [nlin.CG].

    Google Scholar 

  5. Białecki, M. (2012c), Motzkin numbers out of Random Domino Automaton, Phys. Lett. A 376,45, 3098–3100, DOI: 10.1016/j.physleta.2012.09.022.

    Article  Google Scholar 

  6. Białecki, M., and Z. Czechowski (2010), On a simple stochastic cellular automaton with avalanches: simulation and analytical results. In: V. de Rubeis, Z. Czechowski, and R. Teisseyre (eds.), Synchronization and Triggering: from Fracture to Earthquake Processes, GeoPlanet — Earth and Planetary Sciences, Vol. 1, Springer, Berlin Heidelberg, 63–75, DOI: 10.1007/978-3-642-12300-9_5.

    Chapter  Google Scholar 

  7. Białecki, M., and Z. Czechowski (2013), On one-to-one dependence of rebound parameters on statistics of clusters: exponential and inverse-power distributions out of Random Domino Automaton, J. Phys. Soc. Jpn. 82,1, 014003, DOI: 10.7566/JPSJ.82.014003.

    Article  Google Scholar 

  8. Czechowski, Z. (2001), Transformation of random distributions into power-like distributions due to non-linearities: application to geophysical phenomena, Geophys. J. Int. 144, 197–205, DOI: 10.1046/j.1365-246X.2001.00318.x.

    Article  Google Scholar 

  9. Czechowski, Z. (2003), The privilege as the cause of power distributions in geophysics, Geophys. J. Int. 154,3, 754–766, DOI: 10.1046/j.1365-246X.2003.01994.x.

    Article  Google Scholar 

  10. Czechowski, Z., and M. Białecki (2010), Ito equations as macroscopic stochastic models of geophysical phenomena — construction of the models on the basis of time series. In: V. de Rubeis, Z. Czechowski, and R. Teisseyre (eds.), Synchronization and Triggering: from Fracture to Earthquake Processes, GeoPlanet — Earth and Planetary Sciences, Vol. 1, Springer, Berlin Heidelberg, 77–96, DOI: 10.1007/978-3-642-12300-9_6.

    Chapter  Google Scholar 

  11. Czechowski, Z., and M. Białecki. (2012a), Ito equations out of domino cellular automaton with efficiency parameters, Acta Geophys. 60,3, 846–857, DOI: 10.2478/s11600-012-0021-0.

    Article  Google Scholar 

  12. Czechowski, Z., and M. Białecki (2012b), Three-level description of the domino cellular automaton, J. Phys. A: Math. Theor. 45,15, 155101, DOI: 10.1088/1751-8113/45/15/155101.

    Article  Google Scholar 

  13. Czechowski, Z., and A. Rozmarynowska (2008), The importance of the privilege for apperance of inverse-power solutions in Ito equations, Physica A 387,22, 5403–5416, DOI: 10.1016/j.physa.2008.06.007.

    Article  Google Scholar 

  14. Czechowski, Z., and L. Telesca (2011), The construction of an Ito model for geoelectrical signals, Physica A 390,13, 2511–2519, DOI: 10.1016/j.physa.2011.02.049.

    Article  Google Scholar 

  15. Drossel, B., and F. Schwabl (1992), Self-organized critical forest-fire model, Phys. Rev. Lett. 69,11, 1629–1632, DOI: 10.1103/PhysRevLett.69.1629.

    Article  Google Scholar 

  16. González, Á., M. Vázquez-Prada, J.B. Gómez, and A.F. Pacheco (2006), A way to synchronize models with seismic faults for earthquake forecasting: Insights from a simple stochastic model, Tectonophysics 424,3–4, 319–334, DOI: 10.1016/j.tecto.2006.03.039.

    Article  Google Scholar 

  17. Holliday, J.R., J.B. Rundle, and D.L. Turcotte (2009), Earthquake forecasting and verification. In: R.A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, Springer, New York, 2438–2449, DOI: 10.1007/978-0-387-30440-3_149.

    Chapter  Google Scholar 

  18. Malamud, B.D., G. Morein, and D.L. Turcotte (1998), Forest fires: an example of selforganized critical behavior, Science 281,5384, 1840–1842, DOI: 10.1126/science.281.5384.1840.

    Article  Google Scholar 

  19. Muñoz-Diosdado, A., A.H. Rudolf-Navarro, and F. Angulo-Brown (2012), Simulation and properties of a non-homogeneous spring-block earthquake model with asperities, Acta Geophys. 60,3, 740–757, 10.2478/s11600-012-0027-7.

    Article  Google Scholar 

  20. Newman, M.E.J. (2011), Complex systems: A survey, Am. J. Phys. 79,8, 800–810, DOI: 10.1119/1.3590372.

    Article  Google Scholar 

  21. Rundle, J.B., D.L. Turcotte, R. Shcherbakov, W. Klein, and C. Sammis (2003), Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems, Rev. Geophys. 41,4, 1019, DOI: 10.1029/2003RG000135.

    Article  Google Scholar 

  22. Segall, P. (2012), Understanding earthquakes, Science 336,6082, 676–677, DOI: 10.1126/science.1220946.

    Article  Google Scholar 

  23. Sornette, D. (2006), Critical Phenomena in Natural Sciences. Chaos, Fractals, Selforganization and Disorder: Concepts and Tools, 2nd ed., Springer, Berlin.

    Google Scholar 

  24. Tejedor, A., S. Ambroj, J.B. Gómez, and A.F. Pacheco (2008), Predictability of the large relaxations in a cellular automaton model, J. Phys. A: Math. Theor. 41,37, 375102, DOI: 10.1088/1751-8113/41/37/375102.

    Article  Google Scholar 

  25. Tejedor, A., J.B. Gómez, and A.F. Pacheco (2009), Earthquake size-frequency statistics in a forest-fire model of individual faults, Phys. Rev. E 79,4, 046102, DOI: 10.1103/PhysRevE.79.046102.

    Article  Google Scholar 

  26. Tejedor, A., J.B. Gómez, and A.F. Pacheco (2010), Hierarchical model for distributed seismicity, Phys. Rev. E 82,1, 016118, DOI: 10.1103/PhysRevE.82.016118.

    Article  Google Scholar 

  27. Telesca, L., and Z. Czechowski (2012), Discriminating geoelectrical signals measured in seismic and aseismic areas by using Ito models, Physica A 391,3, 809–818, DOI: 10.1016/j.physa.2011.09.006.

    Article  Google Scholar 

  28. Turcotte, D.L. (1999), Self-organized criticality, Rep. Prog. Phys. 62,10, 1377–1429, DOI: 10.1088/0034-4885/62/10/201.

    Article  Google Scholar 

  29. Vázquez-Prada, M., Á. González, J.B. Gómez, and A.F. Pacheco (2002), A minimalist model of characteristic earthquakes, Nonlin. Processes Geophys. 9,5/6, 513–519, DOI: 10.5194/npg-9-513-2002.

    Article  Google Scholar 

  30. Vere-Jones, D. (2009), Earthquake occurrence and mechanisms, stochastic models for. In: R.A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, Springer, New York, 2555–2580, DOI: 10.1007/978-0-387-30440-3_155.

    Chapter  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mariusz Białecki.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Białecki, M. From statistics of avalanches to microscopic dynamics parameters in a toy model of earthquakes. Acta Geophys. 61, 1677–1689 (2013). https://doi.org/10.2478/s11600-013-0111-7

Download citation

Key words

  • stochastic cellular automata
  • avalanches
  • toy models of earthquakes
  • forest-fire models
  • Markov chains