Acta Geophysica

, Volume 61, Issue 5, pp 1196–1210 | Cite as

Internal sedimentary architecture and coastal dynamics as revealed by ground penetrating radar, Kachchh coast, western India

  • Shashi B. Shukla
  • Vikas M. Chowksey
  • Siddharth P. Prizomwala
  • Vishal M. Ukey
  • Nilesh P. Bhatt
  • Deepak M. Maurya
Research Article


The coastline constitutes a very sensitive geomorphic domain which is constantly subjected to dynamic coastal processes and stores vital information regarding past sea level fluctuations. A ground-penetrating radar (GPR) survey was carried out along the northern coast of the Gulf of Kachchh which is one of the largest macrotidal inlets of the Arabian Sea, Western India. Our studies have delineated several radar surfaces and radar facies which reflect the internal architecture and sediment body geometry, which can be related to the processes acting along this coastline. Various radar facies, namely, beach ridge (Br), washover (Wo), coastal dune (Cd), swale (Sw), berm plain (Bp), and sandsheet facies (Ss) have been identified. The GPR studies successfully documented the subsurface presence of ancient beach ridge system towards the sea, and the coastal dunes towards the land side. The results are suggestive of signatures of changes in sea level and the coastline being prone to high energy events in the recent past. The GPR has been found to be an important non-invasive geophysical tool in the study of past coastal dynamics.

Key words

ground penetrating radar (GPR) beach ridge washover coastal geomorphology Gulf of Kachchh 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Annan, A.P. (1999), Practical Processing of GPR Data, Sensors and Software Inc., Ontario.Google Scholar
  2. Bennett, M.R., N.J. Cassidy, and J. Pile (2009), Internal structure of a barrier beach as revealed by ground penetrating radar (GPR): Chesil beach, UK, Geomorphology 104,3–4, 218–229, DOI: 10.1016/j.geomorph.2008.08.015.CrossRefGoogle Scholar
  3. Bristow, C.S., and K. Pucillo (2006), Quantifying rates of coastal progradation from sediment volume using GPR and OSL: the Holocene fill of Guilchen Bay, south-east South Australia, Sedimentology 53,4, 769–788, DOI: 10.1111/j.1365-3091.2006.00792.x.CrossRefGoogle Scholar
  4. Bristow, C.S., P.N. Chroston, and S.D. Bailey (2000), The structure and development of foredunes on a locally prograding coast: insights from groundpenetrating radar surveys, Norfolk, UK, Sedimentology 47,5, 923–944, DOI: 10.1046/j.1365-3091.2000.00330.x.CrossRefGoogle Scholar
  5. Clemmensen, L.B., and L. Nielsen (2010), Internal architecture of a raised beach ridge system (Anholt, Denmark) resolved by ground-penetrating radar investigations, Sediment. Geol. 223,3–4, 281–290, DOI: 10.1016/j.sedgeo.2009.11.014.CrossRefGoogle Scholar
  6. Collinson, J.D., and D.B. Thompson (1989), Sedimentary Structures, 2nd ed., Unwin Hyman, London.Google Scholar
  7. Costas, S., and D. Fitzgerald (2011), Sedimentary architecture of a spit-end (Salisbury Beach, Massachusetts): The imprints of sea-level rise and inlet dynamics, Mar. Geol. 284,1–4, 203–216, DOI: 10.1016/j.margeo.2011.04.002.CrossRefGoogle Scholar
  8. Costas, S., I. Alejo, F. Rial, H. Lorenzo, and M.A. Nombela (2006), Cyclical evolution of a modern transgressive sand barrier in Northwestern Spain elucidated by GPR and aerial photos, J. Sediment. Res. 76,9, 1077–1092, DOI: 10.2110/jsr.2006.094.CrossRefGoogle Scholar
  9. Engels, S., and M.C. Roberts (2005), The architecture of prograding sandy-gravel beach ridges formed during the last Holocene highstand: Southwestern British Columbia, Canada, J. Sediment. Res. 75,6, 1052–1064, DOI: 10.2110./jsr.2005.081.CrossRefGoogle Scholar
  10. Fairbanks, R.G. (1989), A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation, Nature 342,6250, 637–642, DOI: 10.1038/342637a0.CrossRefGoogle Scholar
  11. Garrison, J.R., J. Williams, S.P. Miller, E.T. Weber, G. McMechan, and X. Zeng (2010), Ground-penetrating radar study of North Padre Island: implications for barrier island internal architecture, model for growth of progradational microtidal barrier islands, and Gulf of Mexico sea-level cyclicity, J. Sediment. Res. 80,4, 303–319, DOI: 10.2110/jsr.2010.034.CrossRefGoogle Scholar
  12. Hashimi, N.H., R. Nigam, R.R. Nair, and G. Rajagopalan (1995), Holocene sea level fluctuations on western Indian continental margin: An update, J. Geol. Soc. India 46,2, 157–162.Google Scholar
  13. Havholm, K.G., D.V. Ames, G.R. Whittecar, B.A. Wenell, S.R. Riggs, H.M. Jol, G.W. Berger, and M.A. Holmes (2004), Stratigraphy of back-barrier coastal dunes, northern North Carolina and southern Virginia, J. Coastal Res. 20,4, 980–999, DOI: 10.2112/03503A2.1.CrossRefGoogle Scholar
  14. Jol, H.M., D.C. Lawton, and D.G. Smith (2003), Ground penetrating radar: 2-D and 3-D subsurface imaging of a coastal barrier spit, Long Beach, WA, USA, Geomorphology 53,1–2, 165–181, DOI: 10.1016/S0169-555X(02)00352-5.CrossRefGoogle Scholar
  15. Kar, A. (1993), Neotectonic influences on morphological variations along the coastline of Kachchh, India, Geomorphology 8,2–3, 199–219, DOI: 10.1016/0169-555X(93)90038-4.CrossRefGoogle Scholar
  16. Lindhorst, S., C. Betzler, and H.C. Hass (2008), The sedimentary architecture of a Holocene barrier spit (Sylt, German Bight): Swash-bar accretion and storm erosion, Sediment. Geol. 206,1–4, 1–16, DOI: 10.1016/j.sedgeo.2008.02.008.CrossRefGoogle Scholar
  17. Maurya, D.M., M.G. Thakkar, A.K. Patidar, S. Bhandari, B. Goyal, and L.S. Chamyal (2008), Late Quaternary geomorphic evolution of the coastal zone of Kachchh, western India, J. Coastal Res. 24,3, 746–758, DOI: 10.2112/05-0500.1.CrossRefGoogle Scholar
  18. Neal, A. (2004), Ground-penetrating radar and its use in sedimentology: principles, problems and progress, Earth Sci. Rev. 66,3–4, 261–330, DOI: 10.1016/j.earscirev.2004.01.004.CrossRefGoogle Scholar
  19. Neal, A., and C.L. Roberts (2000), Application of ground-penetrating radar (GPR) to sedimentological, geomorphological and geoarchaeological studies in coastal environments. In: K. Pye and J.R.L. Allen (eds.), Coastal and Estuarine Environments; Sedimentology, Geomorphology and Geoarchaeology, Geol. Soc. London Spec. Publ., Vol. 175, 139–171, DOI: 10.1144/GSL.SP.2000.175.01.12.Google Scholar
  20. Neal, A., and C.L. Roberts (2001), Internal structure of trough blowout, determined from migrated ground-penetrating radar profiles, Sedimentology 48,4, 791–810, DOI: 10.1046/j.1365-3091.2001.00382.x.CrossRefGoogle Scholar
  21. Neal, A., N.I. Pontee, K. Pye, and J. Richards (2002), Internal structure of mixedsand-and-gravel beach deposits revealed using ground-penetrating radar, Sedimentology 49,4, 789–804, DOI: 10.1046/j.1365-3091.2002.00468.x.CrossRefGoogle Scholar
  22. Neal, A., J. Richards, and K. Pye (2003), Sedimentology of coarse-clastic beachridge deposits, Essex, southeast England, Sediment. Geol. 162,3–4, 167–198, DOI: 10.1016/S0037-0738(03)00136-2.CrossRefGoogle Scholar
  23. Otvos, E.G. (2000), Beach ridges — definitions and significance, Geomorphology 32,1–2, 83–108, DOI: 10.1016/S0169-555X(99)00075-6.CrossRefGoogle Scholar
  24. Pethick, J. (2000), An Introduction to Coastal Geomorphology, Oxford University Press Inc., OxfordGoogle Scholar
  25. Prizomwala, S.P., S.B. Shukla, and N. Bhatt (2010), Geomorphic assemblage of the Gulf of Kachchh coast, western India: Implications in understanding the pathways of coastal sediments, Z. Geomorphol. 54,1, 31–46, DOI: 10.1127/0372-8854/2010/0054-0003.CrossRefGoogle Scholar
  26. Prizomwala, S.P., S.B. Shukla, N. Basavaiah, and N. Bhatt (2013), Provenance discrimination studies on sediments of SW Kachchh coast, western India: Insights from heavy mineral and mineral magnetic analysis, J. Coastal Res. 29,1, 52–60, DOI: 10.2112/JCOASTRES-D-11-00048.1.CrossRefGoogle Scholar
  27. Rao, V.P., M. Veerayya, M. Thamban, and B.G. Wagle (1996), Evidences of late Quaternary neotectonic activity and sea-level changes along the western continental margin of India, Curr. Sci. India 71,3, 213–219.Google Scholar
  28. Rao, V.P., G. Rajagopalan, K.H. Vora, and F. Almeida (2003), Late Quaternary sea level and environmental changes from relic carbonate deposits of the western margin of India, J. Earth Syst. Sci. 112,1, 1–25, DOI: 10.1007/BF02710040.CrossRefGoogle Scholar
  29. Reineck, H.E., and I.B. Singh (1980), Depositional Sedimentary Environments, Springer-Verlag, Berlin-Heidelberg.CrossRefGoogle Scholar
  30. Shukla, S.B., A.K. Patidar, and N. Bhatt (2008), Application of GPR in the study of shallow subsurface sedimentary architecture of Modwa spit, Gulf of Kachchh, J. Earth Syst. Sci. 117,1, 33–40, DOI: 10.1007/s12040-008-0010-5.CrossRefGoogle Scholar
  31. Switzer, A.D., C.S. Bristow, and B.G. Jones (2006), Investigation of large-scale washover of a small barrier system on the southeast Australian coast using ground penetrating radar, Sediment. Geol. 183,1–2, 145–156, DOI: 10.1016/j.sedgeo.2005.09.015.CrossRefGoogle Scholar
  32. Van Dam, R.L., and W. Schlager (2000), Identifying causes of ground-penetrating radar reflections using time-domain reflectometry and sedimentological analysis, Sedimentology 47,2, 435–449, DOI: 10.1046/j.1365-3091.2000.00304.x.Google Scholar
  33. Wang, P., and M.H. Horwitz (2007), Erosional and depositional characteristics of regional overwash deposits caused by multiple hurricanes, Sedimentology 54,3, 545–564, DOI: 10.1111/j.1365-3091.2006.00848.x.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Shashi B. Shukla
    • 1
  • Vikas M. Chowksey
    • 1
  • Siddharth P. Prizomwala
    • 1
  • Vishal M. Ukey
    • 1
  • Nilesh P. Bhatt
    • 1
  • Deepak M. Maurya
    • 1
  1. 1.Department of Geology, Faculty of ScienceThe M.S. University of BarodaVadodaraIndia

Personalised recommendations