Skip to main content
Log in

Analysis of floodplain inundation using 2D nonlinear diffusive wave equation solved with splitting technique

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

In the paper a solution of two-dimensional (2D) nonlinear diffusive wave equation in a partially dry and wet domain is considered. The splitting technique which allows to reduce 2D problem into the sequence of one-dimensional (1D) problems is applied. The obtained 1D equations with regard to x and y are spatially discretized using the modified finite element method with the linear shape functions. The applied modification referring to the procedure of spatial integration leads to a more general algorithm involving a weighting parameter. Time integration is carried out using a two-level difference scheme with the weighting parameter as well. The resulting tri-diagonal systems of nonlinear algebraic equations are solved using the Picard iterative method. For particular sets of the weighting parameters, the proposed method takes the form of a standard finite element method and various schemes of the finite difference method. On the other hand, for the linear version of the governing equation, the proper values of the weighting parameters ensure an approximation of 3rd order. Since the diffusive wave equation can be solved no matter whether the area is dry or wet, the numerical computations can be carried out over entire domain of solution without distinguishing a current position of the shoreline which is obtained as a result of solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ascher, U.M., and L.R. Petzold (1998), Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM, Philadelphia.

    Book  Google Scholar 

  • Bates, P.D., and M.S. Horritt (2005), Modelling wetting and drying processes in hydraulic models. In: P.D. Bates, S.N. Lane, and R.I. Ferguson (eds.), Computational Fluid Dynamics: Applications in Environmental Hydraulics, John Wiley & Sons Ltd., New York, 121–146, DOI: 10.1002/0470015195. ch6.

    Chapter  Google Scholar 

  • Cea, L., M. Garrido, and J. Puertas (2010), Experimental validation of twodimensional depth-averaged models for forecasting rainfall-runoff from precipitation data in urban areas, J. Hydrol. 382,1–4, 88–102, DOI: 10.1016/j.jhydrol.2009.12.020.

    Article  Google Scholar 

  • Cunge, J.A. (1975), Two dimensional modeling of flood plains. In: K. Mahmood and V. Yevjevich (eds.), Unsteady Flow in Open Channels, Vol. 2, Water Resources Publs., Fort Collins, 705–762.

    Google Scholar 

  • Dahlquist, G., and A. Björck (1974), Numerical Methods, Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  • Fletcher, C.A.J. (1991), Computational Techniques for Fluid Dynamics, Vol. 1, Springer, New York.

    Google Scholar 

  • Gresho, P.M., and R.L. Sani (1998), Incompressible Flow and the Finite Element Method. Volume 1: Advection-Diffusion and Isothermal Laminar Flow, John Wiley & Sons Inc., New York.

    Google Scholar 

  • Heniche, M., Y. Secretan, P. Boudreau, and M. Leclerc (2000), A two-dimensional finite element drying-wetting shallow water model for rivers and estuaries, Adv. Water Resour. 23,4, 359–372, DOI: 10.1016/S0309-1708(99)00031-7.

    Article  Google Scholar 

  • Hervouet, J.-M. (2007), Hydrodynamics of Free Surface Flows — Modelling with the Finite Element Method, John Wiley & Sons Ltd., Chichester, 360 pp.

    Book  Google Scholar 

  • Horritt, M.S. (2002), Evaluating wetting and drying algorithms for finite element models of shallow water flow, Int. J. Numer. Meth. Eng. 55,7, 835–851, DOI: 10.1002/nme.529.

    Article  Google Scholar 

  • Horritt, M.S., and P.D. Bates (2001), Predicting floodplain inundation: raster-based modelling versus the finite-element approach, Hydrol. Process. 15,5, 825–842, DOI: 10.1002/hyp.188.

    Article  Google Scholar 

  • Hromadka, T.V., and C.C. Yen (1986), A diffusion hydrodynamic model (DHM), Adv. Water Resour. 9,3, 118–170, DOI: 10.1016/0309-1708(86)90031-X.

    Article  Google Scholar 

  • Hsu, M.H., S.H. Chen, and T.J. Chang (2000), Inundation simulation for urban drainage basin with storm sewer system, J. Hydrol. 234,1–2, 21–37, DOI: 10.1016/S0022-1694(00)00237-7.

    Article  Google Scholar 

  • Jothiprasad, G., and D.A. Caughey (2008), A collocated, iterative fractional-step method for incompressible large eddy simulation, Int. J. Numer. Meth. Fluids 58,4, 355–380, DOI: 10.1002/fld.1713.

    Article  Google Scholar 

  • Kalinowska, M.B., P.M. Rowiński, J. Kubrak, and D. Mirosøaw-Świątek (2012), Scenarios of the spread of a waste heat discharge in a river - Vistula River case study, Acta Geophys. 60,1, 214–231, DOI: 10.2478/s11600-011-0045-x.

    Article  Google Scholar 

  • LeVeque, R.J. (2002), Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambrige University Press, Cambridge, 578 pp.

    Book  Google Scholar 

  • Liang, Q., and A.G.L. Borthwick (2009), Adaptive quadtree simulation of shallow flows with wet-dry fronts over complex topography, Comput. Fluids 38,2, 221–234, DOI: 10.1016/j.compfluid.2008.02.008.

    Article  Google Scholar 

  • Louaked, M., and L. Hanich (1998), TVD scheme for the shallow water equations, J. Hydraul. Res. 36,3, 363–378, DOI: 10.1080/00221689809498624.

    Article  Google Scholar 

  • Morita, M., and B.C. Yen (2000), Numerical methods for conjunctive two-dimensional surface and three-dimensional sub-surface flows, Int. J. Numer. Meth. Fluids 32,8, 921–957, DOI: 10.1002/(SICI)1097-0363(20000430)32:8〈921::AID-FLD993〉3.0.CO;2-3.

    Article  Google Scholar 

  • Moussa, R., and C. Bocquillon (2009), On the use of the diffusive wave for modelling extreme flood events with overbank flow in the floodplain, J. Hydrol. 374,1–2, 116–135, DOI: 10.1016/j.jhydrol.2009.06.006.

    Article  Google Scholar 

  • Potter, D. (1973), Computational Physics, John Wiley & Sons Ltd., New York.

    Google Scholar 

  • Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery (1992), Numerical Recipes in C, the Art of Scientific Computing, 2nd ed., Cambridge University Press, Cambridge.

    Google Scholar 

  • Prestininzi, P. (2008), Suitability of the diffusive model for dam break simulation: Application to a CADAM experiment, J. Hydrol. 361,1–2, 172–185, DOI: 10.1016/j.jhydrol.2008.07.050.

    Article  Google Scholar 

  • Singh, V.P. (1996), Kinematic Wave Modeling in Water Resources: Surface-Water Hydrology, John Wiley & Sons Ltd., New York, 1420 pp.

    Google Scholar 

  • Szydłowski, M. (2001), Two-dimensional shallow water model rapidly and gradually varied flow, Arch. Hydro-Eng. Environ. Mech. 48,1, 35–61.

    Google Scholar 

  • Szydłowski, M. (2008), Two-dimensional diffusion wave model for numerical simulation of inundation — Upper Narew case study, Publs. Inst. Geophys. Pol. Acad. Sc. E-9,405, 107–120.

    Google Scholar 

  • Szymkiewicz, R. (1995), Method to solve 1D unsteady transport and flow equations, J. Hydraul. Eng. ASCE 121,5, 396–403, DOI: 10.1061/(ASCE)0733-9429(1995)121:5(396).

    Article  Google Scholar 

  • Szymkiewicz, R. (2010), Numerical Modeling in Open Channel Hydraulics, Water Science and Technology Library, Vol. 83, Springer, Dordrecht, DOI: 10.1007/978-90-481-3674-2.

    Book  Google Scholar 

  • Szymkiewicz, R., and D. Gąsiorowski (2012), Simulation of unsteady flow over floodplain using the diffusive wave equation and the modified finite element method, J. Hydrol. 464–465, 165–175, DOI: 10.1016/j.jhydrol.2012.07.009.

    Article  Google Scholar 

  • Tan, W. (1992), Shallow Water Hydrodynamics, Elsevier Oceanography Series, Vol. 55, Elsevier, Amsterdam, 434 pp.

    Google Scholar 

  • Weill, S., E. Mouche, and J. Patin (2009), A generalized Richards equation for surface/subsurface flow modelling, J. Hydrol. 366,1–4, 9–20, DOI: 10.1016/j.jhydrol.2008.12.007.

    Article  Google Scholar 

  • Zhang, X.H., H. Ishidaira, K. Takeuchi, Z.X. Xu, and X.W. Zhang (2004), An approach to inundation simulation in large river basins using the triangle finite difference method, J. Environ. Inform. 3,1, 51–63, DOI: 10.3808/jei.200400027.

    Article  Google Scholar 

  • Zienkiewicz, O.C. (1971), The Finite Element Method in Engineering Science, McGraw-Hill, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Gąsiorowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gąsiorowski, D. Analysis of floodplain inundation using 2D nonlinear diffusive wave equation solved with splitting technique. Acta Geophys. 61, 668–689 (2013). https://doi.org/10.2478/s11600-012-0087-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-012-0087-8

Key words

Navigation