Skip to main content
Log in

Numerical calculation of cosmic ray ionization rate profiles in the middle atmosphere and lower ionosphere with relation to characteristic energy intervals

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Numerical calculations of galactic cosmic ray (GCR) ionization rate profiles are presented for the middle atmosphere and lower ionosphere altitudes (35–90 km) for the full GCR composition (protons, alpha particles, and groups of heavier nuclei: light L, medium M, heavy H, very heavy VH). This investigation is based on a model developed by Velinov et al. (1974) and Velinov and Mateev (2008), which is further improved in the present paper. Analytical expressions for energy interval contributions are provided. An approximation of the ionization function on three energy intervals is used and for the first time the charge decrease interval for electron capturing (Dorman 2004) is investigated quantitatively. Development in this field of research is important for better understanding the impact of space weather on the atmosphere. GCRs influence the ionization and electric parameters in the atmosphere and also the chemical processes (ozone creation and depletion in the stratosphere) in it. The model results show good agreement with experimental data (Brasseur and Solomon 1986, Rosenberg and Lanzerotti 1979, Van Allen 1952).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agostinelli, S., J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arcel, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche (2003). GEANT4 — a simulation toolkit, Nucl. Instrum. Meth. Phys. Res. A 506,3, 250–303, DOI: 10.1016/S0168-9002(03)01368-8.

    Article  Google Scholar 

  • Alexandrov, L., and A. Mishev (2008), Application of afxy-code for parameterization of ionization yield function Y in the atmosphere for primary cosmic ray protons, arXiv:0712.3174 [physics.space-ph].

  • Apanasenko, A.V., V.A. Beresovskaya, M. Fuji, V.I. Galkin, M. Hareyama, M. Ichimura, S. Ito, E. Kamioka, T. Kitami, T. Kobayashi, V.V. Kopenkin, S. Kuramata, Y. Kuriyama, V.I. Lapshin, A.K. Managadze, H. Matsutani, H. Mikami, N.P. Misnikova, R.A. Mukhamedshin, M. Namiki, H. Nanjo, S.N. Nazarov, S.I. Nikolsky, T. Oe, S. Ohta, V.I. Osedlo, D.S. Oshuev, P.A. Publichenko, I.V. Rakovolskaya, T.M. Roganova, M. Saito, G.P. Sazhina, H. Semba, Yu.N. Shabanova, T. Shibata, H. Sugimoto, L.G. Sveshnikova, K. Takahashi, T. Tsutiya, V.M. Taran, N. Yajima, T. Yamagami, K. Yamamoto, I.V. Yashin, E.A. Zamchalova, G.T. Zetsepin, and I.S. Zayarnaya (2001), All particle spectrum observed by RUNJOB. In: Proc. 27th Int. Cosmic Ray Conference, 7–15 August 2001, Hamburg, Germany, 1622–1625.

  • Bethe, H. (1930), Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie, Ann. Phys. 397,3, 325–400, DOI: 10.1002/andp.19303970303 (in German).

    Article  Google Scholar 

  • Bloch, F. (1933), Bremsvermögen von Atomen mit mehreren Elektronen, Z. Phys., 81,5–6, 363–376, DOI: 10.1007/BF01344553 (in German).

    Google Scholar 

  • Bohr, N. (1913), On the theory of the decrease of velocity of moving electrified particles on passing through matter, Philos. Mag. Ser. 6 25,145, 10–31, DOI: 10.1080/14786440108634305.

    Article  Google Scholar 

  • Brasseur, G.P., and S. Solomon (1986), Aeronomy of the Middle Atmosphere, Chemistry and Physics of the Stratosphere and Mesosphere, 2 ed., Atmospheric and Oceanographic Sciences Library, Reidel Publ. Comp., Dordrecht, 452 pp.

    Book  Google Scholar 

  • De Nolfo, G.A., N.E. Yanasak, W.R. Binns, A.C. Cummings, A.J. Davis, J.S. George, P.L. Hink, M.H. Israel, R.A. Leske, R.A. Mewaldt, E.C. Stone, T.T. von Rosenvinge, and M.E. Wiedenbeck (2003), New measurements of the Li, Be, and B isotopes as a test of cosmic ray transport models. In: Proc. 28th Int. Cosmic Ray Conference, 31 July–7 August 2003, Tsukuba, Japan, 1777–1780.

  • Desorgher, L., E.O. Flückiger, M. Gurtner, M.R. Moser, and R. Bütikofer (2005), Atmocosmics: A GEANT 4 code for computing the interaction of cosmic rays with the Earth’s atmosphere, Int. J. Modern Phys. A 20,29, 6802–6804, DOI: 10.1142/S0217751X05030132.

    Article  Google Scholar 

  • Dorman, L.I. (2004), Cosmic Rays in the Earth’s Atmosphere and Underground, Astrophysics and Space Science Library, Kluwer Academic Publ., Dordrecht.

    Google Scholar 

  • Dorman, L.I., and I.D. Kozin (1983), Cosmic Radiation in the Upper Atmosphere, Fizmatgiz, Moscow.

    Google Scholar 

  • Gleeson, L.J., and W.I. Axford (1968), Solar modulation of galactic cosmic rays, Astrophys. J. 154, 1011, DOI: 10.1086/149822.

    Article  Google Scholar 

  • Heaps, M.G. (1978), Parameterization of the cosmic ray ion-pair production rate above 18 km, Planet. Space Sci. 26,6, 513–517, DOI: 10.1016/0032-0633(78)90041-7.

    Article  Google Scholar 

  • Heck, D., J. Knapp, J.N. Capdevielle, G. Schatz, and T. Thouw (1998), CORSIKA: A Monte Carlo code to simulate extensive air showers, Forschungszentrum Karlsruhe, Report FZKA 6019.

  • Maplesoft (2010), Maple, Version 14, Mathematics with Maple, Maplesoft.

  • Mishev, A.L. (2009), Recent CORSIKA code simulations for space climate and astrophysics toward to Sun-Earth influences studies. In: Proc. Int. Conference, Fundamental Space Research, 120–123.

  • Mishev, A.L., and P.I.Y. Velinov (2010), The effect of model assumptions on computations of cosmic ray induced ionization in the atmosphere, J. Atmos. Solar Terr. Phys. 72,5–6, 476–481, DOI: 10.1016/j.jastp.2010.01.004.

    Article  Google Scholar 

  • Rosenberg, T.J., and L.J. Lanzerotti (1979), Direct energy inputs to the middle atmosphere. In: NASA, Goddard Space Flight Center, Middle Atmosphere Electrodynamics, SEE N79-25608 16–46, 43–70.

  • Ruder, H., P.I.Y. Velinov, and L.N. Mateev (2006), Interval coupling of cosmic ray protons in ionization model for planetary ionospheres and atmospheres, C. R. Acad. Bulg. Sci. 59,7, 717–722.

    Google Scholar 

  • Starodubcev, S.V., and A.M. Romanov (1962), Penetration of charged particles through substance, Publ. House Uzb. Acad. Sci., Tashkent (in Russian).

    Google Scholar 

  • Sternheimer, R.M. (1961), Fundamental principles and methods of particle detection, In: L.C.L. Yuan, and C.-S. Wu (eds.), Methods in Experimental Physics, Vol. 5, Part A. Nuclear Physics, Acad. Press, New York — London.

    Google Scholar 

  • Tassev, Y.K. (2008), Relationships between low energy proton flux and ozone, temperature and pressure during and after the solar proton event from 20 January 2005, C. R. Acad. Bulg. Sci. 61,2, 243–252.

    Google Scholar 

  • Toptygin, I.N. (1985), Cosmic Rays in Interplanetary Magnetic Fields, D. Reidel Publ., Dordrecht, 375 pp.

    Book  Google Scholar 

  • Usoskin, I.G., K. Alanko-Huotari, G.A. Kovaltsov, and K. Mursula (2005), Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951–2004, J. Geophys. Res. 110, A12108, DOI: 10.1029/2005JA011250.

    Article  Google Scholar 

  • Usoskin, I.G., L. Desorgher, P. Velinov, M. Storini, E.O. Flückiger, R. Bütikofer, and G.A. Kovalstov (2009), Ionization of the Earth’s atmosphere by solar and galactic cosmic rays, Acta Geophys. 57,1, 88–101, DOI: 10.2478/s11600-008-0019-9.

    Article  Google Scholar 

  • Usoskin, I.G., G.A. Kovaltsov, and I.A. Mironova (2010), Cosmic ray induced ionization model CRAC:CRII: An extension to the upper atmosphere, J. Geophys. Res. 115, D10302, DOI: 10.1029/2009JD013142.

    Article  Google Scholar 

  • Van Allen, J.A. (1952), The nature and intensity of the cosmic radiation. In: C.S. White and OO Benson, Jr. (eds.), Physics and Medicine of the Upper Atmosphere, University of New Mexico Press, Albuquerque.

    Google Scholar 

  • Velinov, P.I.Y., G. Nestorov, and L. Dorman (1974), Cosmic Ray Influence on the Ionosphere and on the Radiowave Propagation, BAS Publ. House, Sofia.

    Google Scholar 

  • Velinov, P.I.Y. (1991), Effect of anomalous CR on ionization in high latitude ionosphere, C. R. Acad. Bulg. Sci. 44,2, 33.

    Google Scholar 

  • Velinov, P.I.Y., and L. Mateev (2008), Analytical approach to cosmic ray ionization by nuclei with charge Z in the middle atmosphere — Distribution of galactic CR effects, Adv. Space Res. 42,9, 1586–1592, DOI: 10.1016/j.asr.2007.12.008.

    Article  Google Scholar 

  • Velinov, P.I.Y., A. Mishev, and L. Mateev (2009), Model for induced ionization by galactic cosmic rays in the Earth atmosphere and ionosphere, Adv. Space Res. 44,9, 1002–1007, DOI: 10.1016/j.asr.2009.06.006.

    Article  Google Scholar 

  • Wolfram, S. (2008), Mathematica, Version 7.0, Wolfram Research Inc., Champaign.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter I. Y. Velinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velinov, P.I.Y., Asenovski, S.N. & Mateev, L.N. Numerical calculation of cosmic ray ionization rate profiles in the middle atmosphere and lower ionosphere with relation to characteristic energy intervals. Acta Geophys. 61, 494–509 (2013). https://doi.org/10.2478/s11600-012-0084-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-012-0084-y

Key words

Navigation