Acta Geophysica

, Volume 60, Issue 6, pp 1661–1688 | Cite as

3D numerical simulation of particle-particle collisions in saltation mode near stream beds

Research Article

Abstract

The importance of particle-particle collisions in sediment saltation in the bed-load layer is analyzed herein by means of numerical simulation. The particle saltation theoretical/numerical model follows a Lagrangian approach, and addresses the motion of sediment particles in an open channel flow described by a logarithmic velocity profile. The model is validated with experimental data obtained from the literature. In order to evaluate the importance of the phenomenon, simulations with and without particle-particle collisions were carried out. Results for two different sediment concentrations are presented, namely 0.13% and 2.33%. For each concentration of particles, three different flow intensities were considered, and trajectories of two different particle sizes, within the sand range were computed. Changes in particle rotation, particle velocity, and angle of trajectory before and after particle-particle collisions appear to be relatively important at lower shear stresses, whereas they decrease in significance with increasing flow intensities. Analyses of the evolution in time of the second order moment of particle location suggest that inter-particle collisions introduce transverse diffusion in saltating particles in the span-wise direction.

Key words

particle-particle collision inter-particle collision saltation bed-load transport two-phase flow model Lagrangian model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bialik, R.J. (2011), Particle-particle collision in Lagrangian modelling of saltating grains, J. Hydraul. Res. 49, 23–31, DOI: 10.1080/00221686.2010.543778.CrossRefGoogle Scholar
  2. Bialik, R.J., V.I. Nikora, and P.M. Rowiński (2012), 3D Lagrangian modelling of saltating particles diffusion in turbulent water flow, Acta Geophys. 60,6, 1639–1660, DOI: 10.2478/s11600-012-0003-2.CrossRefGoogle Scholar
  3. Bombardelli, F.A., and H. Chanson (2009), Progress in the observation and modeling of turbulent multi-phase flows, Environ. Fluid Mech. 9, 121–123, DOI: 10.1007/s10652-009-9125-8.CrossRefGoogle Scholar
  4. Bombardelli, F.A., and P.A. Moreno (2012), Exchange at the bed sediments-water column interface. In: C. Gualtieri, and D.T. Mihailovic (eds.), Fluid Mechanics of Environmental Interfaces, 2nd ed., Taylor & Francis, London.Google Scholar
  5. Bombardelli, F.A., A.E. González, and Y.I. Niño (2008), Computation of the particle Basset force with a fractional-derivative approach, J. Hydraul. Eng. ASCE 134,10, 1513–1520, DOI: 10.1061/(ASCE)0733-9429(2008)134:10(1513).CrossRefGoogle Scholar
  6. Bombardelli, F.A., A.E. González, and P.A. Moreno (2010), Numerical simulation of spheres moving an colliding close to bed streams, with a complete characterization of turbulence. In: A. Dittrich, K. Koll, J. Aberle, and P. Geisenhainer (eds.), Proc. Int. Conference on Fluvial Hydraulics River Flow 2010, Braunschwig, Germany, Bundesanstalt für Wasserbau, Karlsruhe, 777–784.Google Scholar
  7. Brennen, C. (2009), Fundamentals of Multiphase Flow, Cambridge University Press, New York, DOI: 10.1002/cjce.5450830515.Google Scholar
  8. Chung, T.J. (2002), Computational Fluid Dynamics, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  9. Crowe, C., J. Schwarzkopf, M. Sommerfeld, and Y. Tsuji (2011), Multiphase Flows with Droplets and Particles, 2nd ed., CRC Press, Boca Raton, FL, DOI: 10.1201/b11103.CrossRefGoogle Scholar
  10. Drake, T.G., R.L. Shreve, W.E. Dietrich, P.J. Whiting, and L.B. Leopold (1998), Bedload transport of fine gravel observed by motion-picture photography, J. Fluid Mech. 192, 193–217, DOI: 10.1017/S0022112088001831.CrossRefGoogle Scholar
  11. García, M.H. (ed.), (2008), Sedimentation Engineering: Processes, Measurements, Modelling, and Practice, ASCE Manuals and Reports on Engineering Practice, No. 110, American Society of Civil Engineers, Reston, DOI: 10.1061/ 40856(200)94.Google Scholar
  12. García, M.H., and Y. Niño (1992), Lagrangian description of beadload transport by saltating particles. In: J.T. Kuo and G.F. Lin (eds.), Stochastic Hydraulics: Proc. 6th IAHR International Symposium, 18–20 May 1992, Taipei, IAHR, 259–266.Google Scholar
  13. González, A.E. (2008), Coupled numerical modelling of sediment transport near the bed using a two-phase flow approach, Ph.D. Thesis, University of California, Davis.Google Scholar
  14. Graf, W.H. (1971), The Hydraulics of Sediment Transport, McGraw-Hill, New York.Google Scholar
  15. Harada, E., and H. Gotoh (2006), Influence of sand shape to vertical sorting under uniform flow condition. In: R.M.L. Ferreira et al. (eds.), Proc. Int. Conference on Fluvial Hydraulics River Flow, 6–8 September 2006, Lisbon, Portugal, Taylor & Francis, 853–858.Google Scholar
  16. Isaacson, E., and H.B. Keller (1966), Analysis of Numerical Methods, Dover Publications, New York.Google Scholar
  17. Jha, S.K., and F.A. Bombardelli (2010), Toward two-phase flow modeling of nondilute sediment transport in open channel, J. Geophys. Res. 115, F03015, DOI: 10.1029/2009JF001347.CrossRefGoogle Scholar
  18. Julien, P.Y. (2010), Erosion and Sedimentation, 2nd ed., Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  19. Lee, H.Y., and I.S. Hsu (1994), Investigation of saltating particle motions, J. Hydraul. Eng. ASCE 120, 831–845, DOI: 10.1061/(ASCE)0733-9429(1994)120:7(831)CrossRefGoogle Scholar
  20. Lee, H.Y., J.Y. You, and Y.T. Lin (2002), Continuous saltating process of multiple sediment particles, J. Hydraul. Eng. ASCE 128,4, 443–450, DOI: 10.1061/(ASCE)0733-9429(2002)128:4(443).CrossRefGoogle Scholar
  21. Lee, H.Y., Y.T. Lin, J.Y. You, and H.W. Wang (2006), On three-dimensional continuous saltating process of sediment particles near the channel bed, J. Hydraul. Res. 44,3, 374–389, DOI: 10.1080/00221686.2006.9521689.CrossRefGoogle Scholar
  22. Lin, S.-Y., Y.-H. Chin, J.-J. Hu, and Y.-C. Chen (2011), A pressure correction method for fluid-particle interaction flow: Direct-forcing method and sedimentation flow, Int. J. Numer. Meth. Fluids 67,12, 1771–1798, DOI: 10.1002/fld.2442.CrossRefGoogle Scholar
  23. Lin, S.-Y., Y.-H. Chin, C.-M. Wu, J.-F. Lin, and Y.-C. Chen (2012), A pressure correction-volume of fluid method for simulation of two-phase flows, Int. J. Numer. Meth. Fluids 68,2, 181–195, DOI: 10.1002/fld.2500.CrossRefGoogle Scholar
  24. Lukerchenko, N., Z. Chara, and P. Vlasak (2006), 2D Numerical model of particlebed collision in fluid particle flows over bed, J. Hydraul. Res. 44,1, 70–78, DOI:10.1080/00221686.2006.9521662.CrossRefGoogle Scholar
  25. Lukerchenko, N., S. Piatsevich, Z. Chara, and P. Vlasak (2009), 3D Numerical model of the spherical particle saltation in a channel with a rough fixed bed, J. Hydrol. Hydromech. 57,2, 100–112, DOI: 10.2478/v10098-009-0009-x.CrossRefGoogle Scholar
  26. Martin, R.L., D.J. Jerolmack, and R. Schumer (2012), The physical basis for anomalous diffusion in bed load transport, J. Geophys. Res. 117, F01018, DOI: 10.1029/2011JF002075.CrossRefGoogle Scholar
  27. Moreno, P.A., F.A. Bombardelli, A.E. González, and V.M. Calo (2011), Three dimensional model for particle saltation close to stream beds, including a detailed description of the particle interaction with turbulence and interparticle collisions. In: Proc. EWRI/ASCE World Environmental and Water Resources Congress 2011, Palm Springs, CA, USA, 2075–2084.Google Scholar
  28. Nikora, V., J. Heald, D. Goring, and I. McEwan (2001), Diffusion of saltating particles in unidirectional water flow over rough granular bed, J. Phys. A 34,50, L743–L749, DOI: 10.1088/0305-4470/34/50/103.CrossRefGoogle Scholar
  29. Nikora, V., H. Habersack, T. Huber, and I. McEwan (2002), On bed particle diffusion in gravel bed flows under weak bed load transport, Water Resour. Res. 31,6, 1081, DOI: 10.1029/2001WR000513.CrossRefGoogle Scholar
  30. Niño, Y., and M.H. García (1994), Gravel saltation. 2. Modeling, Water Resour. Res. 30,6, 1915–1924, DOI: 10.1029/94WR00534.CrossRefGoogle Scholar
  31. Niño, Y., and M.H. García (1998a), Experiments on saltation of sand in water, J. Hydraul. Eng. ASCE 124,10, 1014–1025, DOI: 10.1061/(ASCE)0733-9429(1998)124:10(1014).CrossRefGoogle Scholar
  32. Niño, Y., and M.H. García (1998b), Using Lagrangian particle saltation observations for bedload sediment transport modelling, Hydrol. Process. 12,8, 1197–1218, DOI: 10.1002/(SICI)1099-1085(19980630)12:8〈1197::AID-HYP612〉3.0.CO;2-U.CrossRefGoogle Scholar
  33. Parker, G. (2004), 1D Sediment Transport Morphodynamics with Applications to Rivers and Turbidity Currents, Natl. Cent. for Earth Surf. Dyn., Minneapolis, MN (e-book, available at http://hydrolab.illinois.edu/people/parkerg/).Google Scholar
  34. Radice, A., and F. Ballio (2008), Double-average characteristics of sediment motion in one-dimensional bed load, Acta Geophys. 56,3, 654–668, DOI: 10.2478/s11600-008-0015-0.CrossRefGoogle Scholar
  35. Radice, A., F. Ballio, and V.I. Nikora (2009), On statistical properties of bed load sediment concentration, Water Resour. Res. 45, W06501, DOI: 10.1029/2008WR007192.CrossRefGoogle Scholar
  36. Schmeeckle, M.W., and J.M. Nelson (2003), Direct numerical simulation of bedload transport using a local, dynamic boundary condition, Sedimentology 50,2, 279–301, DOI: 10.1046/j.1365-3091.2003.00555.x.CrossRefGoogle Scholar
  37. Tanaka, T., and Y. Tsuji (1991), Numerical simulation of gas-solid two-phase flow in a vertical pipe: On the effect of inter-particle collision. In: D. Stock, Y. Tsuji, J. Jurewicz, M. Reeks, and M. Gautam (eds.), Gas-Solid Flows, Fluid Engineering Division, Vol. 121, American Society of Mechanical Engineers, 123–128.Google Scholar
  38. van Hinsberg, M.A.T., J.H.M.T. Boonkkamp, and H.J.H. Clercx (2011), An efficient, second order method for the approximation of the Basset history force, J. Comput. Phys. 230,4, 1465–1478, DOI: 10.1016/j.jcp.2010.11.014.CrossRefGoogle Scholar
  39. Wiberg, P.L., and J.D. Smith (1985), A theoretical model for saltating grains in water, J. Geophys. Res. 90,C4, 7341–7354, DOI: 10.1029/JC090iC04p07341.CrossRefGoogle Scholar
  40. Yalin, M.S. (1977), Mechanics of Sediment Transport, 2nd ed., Pergamon Press, Oxford.Google Scholar
  41. Yamamoto, Y., M. Potthoff, T. Tanaka, T. Kajishima, and Y. Tsuji (2001), Largeeddy simulation of turbulent gas-particle flow in a vertical channel: effect of considering inter-particle collisions, J. Fluid Mech. 442, 303–334, DOI: 10.1017/S0022112001005092.CrossRefGoogle Scholar
  42. Yen, B.C. (1992), Sediment fall velocity in oscillating flow, Water Resour. Environ. Eng. Res. Rep. 11, Dept. of Civil Eng., University of Virginia.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of CaliforniaDavisUSA
  2. 2.Escuela de Ingenieria en Obras CivilesUniversidad Diego PortalesSantiagoChile

Personalised recommendations