Skip to main content

A new approach to define surface/sub-surface transition in gravel beds

Abstract

The vertical structure of river beds varies temporally and spatially in response to hydraulic regime, sediment mobility, grain size distribution and faunal interaction. Implicit are changes to the active layer depth and bed porosity, both critical in describing processes such as armour layer development, surface-subsurface exchange processes and siltation/ sealing. Whilst measurements of the bed surface are increasingly informed by quantitative and spatial measurement techniques (e.g., laser displacement scanning), material opacity has precluded the full 3D bed structure analysis required to accurately define the surface-subsurface transition. To overcome this problem, this paper provides magnetic resonance imaging (MRI) data of vertical bed porosity profiles. Uniform and bimodal (σ g = 2.1) sand-gravel beds are considered following restructuring under sub-threshold flow durations of 60 and 960 minutes. MRI data are compared to traditional 2.5D laser displacement scans and six robust definitions of the surface-subsurface transition are provided; these form the focus of discussion.

This is a preview of subscription content, access via your institution.

References

  • Aberle, J. (2007), Measurements of armour layer roughness geometry function and porosity, Acta Geophys. 55,1, 23–32, DOI: 10.2478/s11600-006-0036-5.

    Article  Google Scholar 

  • Aberle, J., and K. Koll (2004), Double-averaged flow field over static armour layers. In: M. Greco, A. Carravetta, and R. Della Morte (eds.), Proc. Int. Conf. on Fluvial Hydraulics “River Flow 2004”, June 2004, Napoli, Italy, Vol. 1, 225–233.

  • Fetter, C.W. (1988), Applied Hydrogeology, 2nd ed., Merrill Publishing, Columbus 592 pp.

    Google Scholar 

  • Hassan, M.A., and M. Church (1994), Vertical mixing of coarse particles in gravel bed rivers: A kinematic model, Water Resour. Res. 30,4, 1173–1185, DOI: 10.1029/93WR03351.

    Article  Google Scholar 

  • Haynes, H., and G. Pender (2007), Stress history effects on graded bed stability, J. Hydraul. Eng. 133,4, 343–349, DOI: 10.1061/(ASCE)0733-9429(2007) 133:4(343).

    Article  Google Scholar 

  • Haynes, H., E. Vignaga, and W.M. Holmes (2009), Using magnetic resonance imaging for experimental analysis of fine-sediment infiltration into gravel beds, Sedimentology 56,7, 1961–1975, DOI: 10.1111/j.1365-3091.2009.01064.x.

    Article  Google Scholar 

  • Hirano, M. (1971), River bed degradation with armouring, Proc. JSCE, 195, 55–65 (in Japanese).

    Google Scholar 

  • Hoey, T.B., and R. Ferguson (1994), Numerical simulation of downstream fining by selective transport in gravel bed rivers: Model development and illustration, Water Resour. Res. 30,7, 2251–2260, DOI: 10.1029/94WR00556.

    Article  Google Scholar 

  • Kaless, G., and L. Mao (2011), Numerical simulation of armour layer development under conditions of sediment starvation. In: Proc. Convegno di Medio Termine dell’Associazione Italiana di Ingegneria Agraria, 22–24 Settembre 2011, Belgirate. Kleinhans, M.G., C.R.L.P.N. Jeukens, C.J.G. Bakker, and R.M. Frings (2008), Magnetic Resonance Imaging of coarse sediment, Sediment. Geol. 208,3–4, 69–78, DOI: 10.1016/j.sedgeo.2008.07.002.

    Google Scholar 

  • Lanzoni, S., and M. Tubino (1999), Grain sorting and bar instability, J. Fluid Mech. 393, 149–174, DOI: 10.1017/S0022112099005583.

    Article  Google Scholar 

  • Marion, A., and L. Fraccarollo (1997), New conversion model for areal sampling of fluvial sediments, J. Hydraul. Eng. 123,12, 1148–1151, DOI: 10.1061/ (ASCE)0733-9429(1997)123:12(1148).

    Article  Google Scholar 

  • Measures, R., and S. Tait (2008), Quantifying the role of bed surface topography in controlling sediment stability in water-worked gravel deposits, Water Resour. Res. 44,W04413, 4413–4430, DOI: 10.1029/2006WR005794.

    Article  Google Scholar 

  • Nikora, V.I., D.G. Goring, and B.J.F. Biggs (1998), On gravel-bed roughness characterization, Water Resour. Res. 34,3, 517–527, DOI: 10.1029/ 97WR02886.

    Article  Google Scholar 

  • Nikora, V.I., D.G. Goring, I. McEwan, and G. Griffiths (2001), Spatially averaged open-channel flow over rough bed, J. Hydraul. Eng. 127,2, 123–133, DOI: 10.1061/(ASCE)0733-9429(2001)127:2(123).

    Article  Google Scholar 

  • Parker, G. (1991), Selective sorting and abrasion of river gravel. I: Theory, J. Hydraul. Eng. 117,2, 131–147, DOI: 10.1061/(ASCE)0733-9429(1991) 117:2(131).

    Article  Google Scholar 

  • Parker, G., and A.J. Sutherland (1990), Fluvial armor, J. Hydraul. Res. 28,5, 529–544, DOI: 10.1080/00221689009499044.

    Article  Google Scholar 

  • Parker, G., C. Paola, and S. Leclair (2000), Probabilistic Exner sediment continuity equation for mixtures with no active layer, J. Hydraul. Eng. 126,11, 818–826, DOI: 10.1061/(ASCE)0733-9429(2000)126:11(818).

    Article  Google Scholar 

  • Sibanda, E., I. McEwan, and A. Marion (2000), Measuring the structure of mixedgrain-size sediment beds, J. Hydraul. Eng. 126,5, 347–353, DOI: 10.1061/ (ASCE)0733-9429(2000)126:5(347).

    Article  Google Scholar 

  • Wathen, S.J., R.I. Ferguson, T.B. Hoey, and A. Werritty (1995), Unequal mobility of gravel and sand in weakly bimodal river sediments, Water Resour. Res. 31,8, 2087–2096, DOI: 10.1029/95WR01229.

    Article  Google Scholar 

  • Wilcock, P.R., G.M. Kondolf, W.V.G. Matthews, and A.F. Barta (1996), Specificiation of sediment maintenance flows for a large gravel-bed river, Water Resour. Res. 32,9, 2911–2921, DOI: 10.1029/96WR01627.

    Article  Google Scholar 

  • Zimmermann, A., M. Coulombe-Pontbriand, and M. Lapointe (2005), Biases of submerged bulk and freeze-core samples, Earth Surf. Process. Land. 30,11, 1405–1417, DOI: 10.1002/esp.1202.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather Haynes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haynes, H., Ockelford, AM., Vignaga, E. et al. A new approach to define surface/sub-surface transition in gravel beds. Acta Geophys. 60, 1589–1606 (2012). https://doi.org/10.2478/s11600-012-0067-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-012-0067-z

Key words

  • magnetic resonance imaging
  • laser scanning
  • stress history
  • porosity