Acta Geophysica

, Volume 61, Issue 1, pp 151–193 | Cite as

Projection of low flow conditions in Germany under climate change by combining three RCMs and a regional hydrological model

  • Shaochun Huang
  • Valentina Krysanova
  • Fred F. Hattermann
Research article


The present study is aimed to: (a) project future low flow conditions in the five largest river basins in Germany, and (b) to account for the projections uncertainties. The eco-hydrological model SWIM was driven by different regional climate models (REMO, CCLM, and Wettreg) to simulate daily river discharges in each study basin. The 50-year low flow was estimated for the period 1961 to 2000, and its return period was assessed for two scenario periods, 2021–2060 and 2061–2100, using the generalized extreme value distribution. The 50-year low flow is likely to occur more frequently in western, southern, and parts of central Germany after 2061, as suggested by more than or equal to 80% of the model runs. The current low flow period (from August to September) may be extended until late autumn at the end of this century. The return period of 50-year deficit volume shows a similar temporal and spatial pattern of change as for the low flow, indicating slightly less severe conditions with lower confidence. When compared with flood projections for the same area using the same models, the severer low flows projected in this study appear more pronounced, consistent, and have lower uncertainty.


low flow RCMs SWIM Germany climate scenarios uncertainty 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, J.G., J.R. Williams, A.D. Nicks, and N.B. Sammons (1990), SWRRB: A Basin Scale Simulation Model for Soil and Water Resources Management, Texas A&M University Press, College Station; 255 pp.Google Scholar
  2. Arnold, J.G., P.M. Allen, and G. Bernhardt (1993), A comprehensive surface-groundwater flow model, J. Hydrol. 142,1–4, 47–69, DOI: 10.1016/0022-1694(93)90004-S.CrossRefGoogle Scholar
  3. Braithwaite, R.J., and Y. Zhang (2000), Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model, J. Glaciol. 46,152, 7–14, DOI: 10.3189/172756500781833511.CrossRefGoogle Scholar
  4. Bronstert, A., V. Kolokotronis, D. Schwandt, and H. Straub (2007), Comparison and evaluation of regional climate scenarios for hydrological impact analysis: General scheme and application example, Int. J. Climatol. 27,12, 1579–1594, DOI: 10.1002/joc.1621.CrossRefGoogle Scholar
  5. Coles, S. (2001), An Introduction to Statistical Modeling of Extreme Values, Springer Verlag, London, 228 pp.Google Scholar
  6. Dynesius, M., and C. Nilsson (1994), Fragmentation and flow regulation of river systems in the northern third of the world, Science 266,5186, 753–762, DOI: 10.1126/science.266.5186.753.CrossRefGoogle Scholar
  7. Enke, W., T. Deutschländer, F. Schneider, and W. Küchler (2005a), Results of five regional climate studies applying a weather pattern based downscaling method to ECHAM4 climate simulation, Meteorol. Z. 14,2, 247–257, DOI: 10.1127/0941-2948/2005/0028.CrossRefGoogle Scholar
  8. Enke, W., F. Schneider, and T. Deutschländer (2005b), A novel scheme to derive optimized circulation pattern classifications for downscaling and forecast purposes, Theor. Appl. Climatol. 82,1–2, 51–63, DOI: 10.1007/s00704-004-0116-x.CrossRefGoogle Scholar
  9. Farr, T.G., P.A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriquez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank, and D. Alsdorf (2007), The Shuttle Radar Topography Mission, Rev. Geophys. 45, RG2004, DOI: 10.1029/2005RG000183.CrossRefGoogle Scholar
  10. Feyen, L., and R. Dankers (2009), Impact of global warming on streamflow drought in Europe, J. Geophys. Res. 114, D17116, DOI: 10.1029/2008JD011438.CrossRefGoogle Scholar
  11. Fleig, A.K., L.M. Tallaksen, H. Hisdal, and S. Demuth (2006), A global evaluation of streamflow drought characteristics, Hydrol. Earth Syst. Sci. 10,4, 535–552, DOI: 10.5194/hess-10-535-2006.CrossRefGoogle Scholar
  12. Gelfan, A.N., J.W. Pomeroy, and L.S. Kuchment (2004), Modeling forest cover influences on snow accumulation, sublimation, and melt, J. Hydrometeor. 5,5, 785–803, DOI: 10.1175/1525-7541(2004)005〈0785:MFCIOS〉2.0.CO;2.CrossRefGoogle Scholar
  13. Graham, L.P., J. Andréasson, and B. Carlsson (2007), Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods — a case study on the Lule River basin, Clim. Change 81,Suppl. 1, 293–307, DOI: 10.1007/s10584-006-9215-2.CrossRefGoogle Scholar
  14. Gustard, A., and A.J. Wesselink (1993), Impact of land-use change on water resources: Balquhidder catchments, J. Hydrol. 145,3–4, 389–401, DOI: 10.1016/0022-1694(93)90065-H.CrossRefGoogle Scholar
  15. Harboe, R. (1988), Including daily constraints in a monthly reservoir operation model for low-flow, Adv. Water Res. 11,2, 54–57, DOI: 10.1016/0309-1708(88)90037-1.CrossRefGoogle Scholar
  16. Hattermann, F.F., V. Krysanova, F. Wechsung, and M. Wattenbach (2004), Integrating groundwater dynamics in regional hydrological modelling, Environ. Model Softw. 19,11, 1039–1051, 10.1016/j.envsoft.2003.11.007.CrossRefGoogle Scholar
  17. Hattermann, F.F., M. Weiland, S. Huang, V. Krysanova, and Z.W. Kundzewicz (2011), Model-supported impact assessment for the water sector in Central Germany under climate change — A case study, Water Resour. Manage. 25,13, 3113–3134, DOI: 10.1007/s11269-011-9848-4.CrossRefGoogle Scholar
  18. Hennegriff, W., J. Ihringer, and V. Kolokotronis (2008), Prognose von Auswirkungen des Klimawandels auf die Niedrigwasser-verhältnisse in Baden-Württemberg, Korrespond. Wasserwirtsch. 6,1, 309–314, DOI: 10.3243/kwe2008.06.003 (in German).Google Scholar
  19. Hisdal, H, K. Stahl, L.M. Tallaksen, and S. Demuth (2001), Have streamflow droughts in Europe become more severe or frequent?, Int. J. Climatol. 21,3, 317–333, DOI: 10.1002/joc.619.CrossRefGoogle Scholar
  20. Hock, R. (2003), Temperature index melt modelling in mountain areas, J. Hydrol. 282,1–4, 104–115, DOI: 10.1016/S0022-1694(03)00257-9.CrossRefGoogle Scholar
  21. Hock, R. (2005), Glacier melt: a review of processes and their modelling, Prog. Phys. Geog. 29,3, 362–391, DOI: 10.1191/0309133305pp453ra.CrossRefGoogle Scholar
  22. Hooghoudt, S.B. (1940), Bijdrage tot de kennis van enige natuurkundige grootheden van de grond, Versl. Landb. Onderz. 46,14, 515–707 (in Dutch).Google Scholar
  23. Huang, S., C. Hesse, V. Krysanova, and F.F. Hattermann (2009), From meso- to macro-scale dynamic water quality modelling for the assessment of land use change scenarios, Ecol. Model. 220,19, 2543–2558, DOI: 10.1016/j.ecolmodel.2009.06.043.CrossRefGoogle Scholar
  24. Huang, S., V. Krysanova, H. Österle, and F.F. Hattermann (2010), Simulation of spatiotemporal dynamics of water fluxes in Germany under climate change, Hydrol. Process. 24,23, 3289–3306, DOI: 10.1002/hyp.7753.CrossRefGoogle Scholar
  25. Huang, S., F.F. Hattermann, V. Krysanova, and A. Bronstert (2012), Projections of climate change affected river flood conditions in Germany by combining three different RCMs with a regional hydrological model, Climatic Change, DOI: 10.1007/s10584-012-0586-2.Google Scholar
  26. Hurkmans, R., W. Terink, R. Uijlenhoet, P. Torfs, D. Jacob, and P.A. Troch (2010), Changes in streamflow dynamics in the Rhine basin under three high-resolution regional climate scenarios, J. Climate 23,3, 679–699, DOI: 10.1175/2009JCLI3066.1.CrossRefGoogle Scholar
  27. IPCC (2007a), Climate Change 2007 — The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 996 pp.Google Scholar
  28. IPCC (2007b), Climate Change 2007-Impacts, Adaptation and Vulnerability — Summary for Policymakers. Working Group II Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 996 pp.Google Scholar
  29. Jacob, D. (2001), A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin, Meteorol. Atmos. Phys. 77,1–4, 61–73, DOI: 10.1007/s007030170017.CrossRefGoogle Scholar
  30. Kay, A.L., H.N. Davies, V.A. Bell, and R.G. Jones (2009), Comparison of uncertainty sources for climate change impacts: flood frequency in England, Climatic Change 92,1–2, 41–63, DOI: 10.1007/s10584-008-9471-4.CrossRefGoogle Scholar
  31. Koskova, R., S. Nemecková, and C. Hesse (2007), Using of the soil parametrisation based on soil samples databases in rainfall-runoff modelling. In: A. Jakubíková, V. Broza, and J. Szolgay (eds.), Proc. Adolf Patera Workshop “Extreme Hydrological Events in Catchments”, 13 November 2007, Bratislava, Slovakia, 241–249 (in Czech).Google Scholar
  32. Krysanova, V., A. Meiner, J. Roosaare, and A. Vasilyev (1989), Simulation modelling of the coastal waters pollution from agricultural watershed, Ecol. Model. 49,1–2, 7–29, DOI: 10.1016/0304-3800(89)90041-0.CrossRefGoogle Scholar
  33. Krysanova, V., D.I. Müller-Wohlfeil, and A. Becker (1998), Development and test of a spatially distributed hydrological /water quality model for mesoscale watersheds, Ecol. Model. 106,2–3, 261–289, DOI: 10.1016/S0304-3800(97)00204-4.CrossRefGoogle Scholar
  34. Krysanova, V., F.F. Hattermann, and F. Wechsung (2005), Development of the ecohydrological model SWIM for regional impact studies and vulnerability assessment, Hydrol. Process. 19,3, 763–783, DOI: 10.1002/hyp.5619.CrossRefGoogle Scholar
  35. Lenderink, G., A. Buishand, and W. van Deursen (2007), Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach, Hydrol. Earth Syst. Sci. 11,3, 1145–1159, DOI: 10.5194/hess-11-1145-2007.CrossRefGoogle Scholar
  36. Maidment, D.R. (ed.) (1993), Handbook of Hydrology, McGraw-Hill, New York.Google Scholar
  37. Majewski, D. (1991), The Europa-Modell of the Deutscher Wetterdienst. In: ECMWF Seminar Proc. “Numerical Methods in Atmospheric Models”, Vol. 2, 147–191.Google Scholar
  38. Mauser, W., T. Marke, and S. Stoeber (2008), Climate change and water resources: Scenarios of low-flow conditions in the Upper Danube River Basin. In: IOP Conf. Ser.: Earth Environ. Sci. 4,1, 012027, DOI: 10.1088/1755-1307/4/1/012027.CrossRefGoogle Scholar
  39. Middelkoop, H., K. Daamen, D. Gellens, W. Grabs, J.C.J. Kwadijk, H. Lang, B.W.A.H. Parmet, B. Schädler, J. Schulla, and K. Wilke (2001), Impact of climate change on hydrological regimes and water resources management in the Rhine basin, Climatic Change 49,1–2, 105–128, DOI: 10.1023/A:1010784727448.CrossRefGoogle Scholar
  40. Monteith, J.L. (1965), Evaporation and environment, Symp. Soc. Expl. Biol. 19, 205–234.Google Scholar
  41. MPI (Max-Planck-Institute) (2008), Globaler Klimawandel und regionale Konsequenzen: REMO — ein regionales Klimamodell,
  42. Orlowsky, B., F.-W. Gerstengarbe, and P.C. Werner (2008), A resampling scheme for regional climate simulations and its performance compared to a dynamical RCM, Theor. Appl. Climatol. 92,3–4, 209–223, DOI: 10.1007/s00704-007-0352-y.CrossRefGoogle Scholar
  43. Paterson, W.S.B. (1994), The Physics of Glaciers, 3rd ed., Elsevier, Oxford.Google Scholar
  44. Pfister, C., R. Weingartner, and J. Luterbacher (2006), Hydrological winter droughts over the last 450 years in the Upper Rhine basin: a methodological approach, Hydrol. Sci. J. 51,5, 966–985, DOI: 10.1623/hysj.51.5.966.CrossRefGoogle Scholar
  45. Priestley, C.H.B., and R.J. Taylor (1972), On the assessment of surface heat flux and evaporation using large-scale parameters, Mon. Weather Rev. 100,2, 81–92, DOI: 10.1175/1520-0493(1972)100〈0081:OTAOSH〉2.3.CO;2.CrossRefGoogle Scholar
  46. Richardson, C.W., and J.T. Ritchie (1973), Soil water balance for small watersheds, Trans. ASAE 16,1, 72–77.Google Scholar
  47. Ritchie, J.T. (1972), Model for predicting evaporation from a row crop with incomplete cover, Water Resour. Res. 8,5, 1204–1213, DOI: 10.1029/WR 008i005p01204.CrossRefGoogle Scholar
  48. Rockel, B., A. Will, and A. Hense (2008), The regional climate model COSMOCLM (CCLM), Meteorol. Z. 17,4, 347–348, DOI: 10.1127/0941-2948/2008/0309.CrossRefGoogle Scholar
  49. Sangrey, D.A., K.O. Harrop-Williams, and J.A. Klaiber (1984), Predicting groundwater response to precipitation, ASCE J. Geotech. Engrg. 110,7, 957–975, DOI: 10.1061/(ASCE)0733-9410(1984)110:7(957).CrossRefGoogle Scholar
  50. Schaefli, B., B. Hingray, M. Niggli, and A. Musy (2005), A conceptual glaciohydrological model for high mountainous catchments, Hydrol. Earth Syst. Sci. 9,1/2, 95–109, DOI: 10.5194/hess-9-95-2005.CrossRefGoogle Scholar
  51. Schönwiese, C.D., T. Staeger, and S. Trömel (2006), Klimawandel und Extremereignisse in Deutschland. In: Klimastatusbericht 2005, Deutscher Wetterdienst, Offenbach, 7–17 (in German).Google Scholar
  52. Smakhtin, V.U. (2001), Low flow hydrology: A review, J. Hydrol. 240,3–4, 147–186, DOI: 10.1016/S0022-1694(00)00340-1.CrossRefGoogle Scholar
  53. Smedema, L.K., and D.W. Rycroft (1983), Land Drainage: Planning and Design of Agricultural Drainage Systems, Cornell University Press, Ithaca, 376 pp.Google Scholar
  54. Stahl, K., H. Hisdal, L. Tallaksen, H.A.J. van Lanen, J. Hannaford, and E. Sauquet (2008), Trends in low flows and streamflow droughts across Europe, UNESCO Report, Paris.Google Scholar
  55. Stahl, K., H. Hisdal, J. Hannaford, L. Tallaksen, H. van Lanen, E. Sauquet, S. Demuth, M. Fendekova, and J. Jordar (2010), Streamflow trends in Europe: evidence from a dataset of near-natural catchments, Hydrol. Earth Syst. Sci. 14, 2367–2382, DOI: 10.5194/hess-14-2367-2010.CrossRefGoogle Scholar
  56. Steppeler, J., G. Doms, U. Schättler, H.W. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric (2003), Meso-gamma scale forecasts using the nonhydrostatic model LM, Meteorol. Atmos. Phys. 82,1–4, 75–96, DOI: 10.1007/s00703-001-0592-9.CrossRefGoogle Scholar
  57. Svensson, C., Z.W. Kundzewicz, and T. Maurer (2005), Trend detection in river flow series: 2. Flood and low-flow index series, Hydrol. Sci. J. 50,5, 811–824, DOI: 10.1623/hysj.2005.50.5.811.CrossRefGoogle Scholar
  58. Teutschbein, C., and J. Seibert (2010), Regional climate models for hydrological impact studies at the catchment scale: A review of recent modeling strategies, Geography Compass 4,7, 834–860, DOI: 10.1111/j.1749-8198.2010.00357.x.CrossRefGoogle Scholar
  59. Themeßl, M.J., A. Gobiet, and A. Leuprecht (2011), Empirical-statistical downscaling and error correcton of daily precipitation from regional climate models, Int. J. Climatol. 31,10, 1530–1544, DOI: 10.1002/joc.2168.CrossRefGoogle Scholar
  60. Walker, K.F., and M.C. Thoms (1993), Environmental effects of flow regulation on the lower river Murray, Australia, Regul. Rivers Res. Manag. 8,1–2, 103–119, DOI: 10.1002/rrr.3450080114.CrossRefGoogle Scholar
  61. Wechsung, F., A. Hanspach, F.F. Hattermann, P. Werner, and F. Gerstengarbe (2006), Klima und anthropogene Wirkungen auf den Niedrigwasserabfluss der mittleren Elbe: Konsequenzen für Unterhaltungsziele und Ausbaunutzen, Potsdam Institut für Klimafolgenforschung, Potsdam. (in German).
  62. Williams, J.R., K.G. Renard, and P.T. Dyke (1984), EPIC — a new model for assessing erosion’s effect on soil productivity, J. Soil Water Conserv. 38,5, 381–383.Google Scholar
  63. Wittenberg, H. (2003), Effects of season and man-made changes on baseflow and flow recession: case studies, Hydrol. Process. 17,11, 2113–2123, DOI: 10.1002/hyp.1324.CrossRefGoogle Scholar
  64. WMO (World Meteorological Organization) (1974), International Glossary of Hydrology, WMO, Geneva.Google Scholar
  65. WMO (World Meteorological Organization) (2008), Manual on low-flow estimation and prediction, Operational hydrology report No. 50.Google Scholar
  66. Zelenhasić, E., and A. Salvai (1987), A method of streamflow drought analysis, Water Resour. Res. 23,1, 156–168, DOI: 10.1029/WR023i001p00156.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Shaochun Huang
    • 1
  • Valentina Krysanova
    • 1
  • Fred F. Hattermann
    • 1
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations