Probabilistic model to forecast earthquakes in the Zemmouri (Algeria) seismoactive area on the basis of moment magnitude scale distribution functions

Abstract

Based on the moment magnitude scale, a probabilistic model was developed to predict the occurrences of strong earthquakes in the seismoactive area of Zemmouri, Algeria. Firstly, the distributions of earthquake magnitudes M i were described using the distribution function F 0(m), which adjusts the magnitudes considered as independent random variables. Secondly, the obtained result, i.e., the distribution function F 0(m) of the variables M i was used to deduce the distribution functions G(x) and H(y) of the variables Y i = Log M 0,i and Z i = M 0,i , where (Y i ) i and (Z i ) i are independent. Thirdly, some forecast for moments of the future earthquakes in the studied area is given.

This is a preview of subscription content, access via your institution.

References

  1. Adamaki, A., E.E. Papadimitriou, G.M. Tsaklidis, and V. Karakostas (2011), Statistical properties of aftershock rate decay: implication for the assess-ment of continuing activity, Acta Geophys. 59,4, 748–769, DOI: 10.2478/s11600-011-0016-2.

    Article  Google Scholar 

  2. Akinci, A. (2010), HAZGRIDX: earthquake forecasting model for ML ≥ 5.0 earthquakes in Italy based on spatially smoothed seismicity, Ann. Geophys. 53,3, 51–61, DOI: 10.4401/ag-4811.

    Google Scholar 

  3. An, W., X. Jin, J. Yang, P. Dong, J. Zhao, and H. Zhang (2007), Application of a time-magnitude prediction model for earthquakes, Appl. Geophys. 4,2, 138–145, DOI: 10.1007/s11770-007-0020-0.

    Article  Google Scholar 

  4. Baddari, K., and A.D. Frolov (2010), Regularities in discrete hierarchy seismoacoustic mode in a geophysical field, Ann. Geophys. 53,5–6, 31–42, DOI: 10.4401/ag.4725.

    Google Scholar 

  5. Baddari, K., G.A. Sobolev, A.D. Frolov, and A.V. Ponomarev (1999), An integrated study of physical precursors of failure in relation to earthquake prediction using large scale rock blocks, Ann. Geophys. 42,5, 771–787.

    Google Scholar 

  6. Baddari, K., A.D. Frolov, V. Tourtchine, and F. Rahmoune (2011), An integrated study of the dynamics of electromagnetic and acoustic regimes during failure of complex macrosystems using rock blocks, Rock Mech. Rock Eng. 44,3, 269–280, DOI: 10.1007/s00603-010-0130-5.

    Article  Google Scholar 

  7. Bogdanov, V.V., A.V. Pavlov, and A.L. Polyukhova (2010), A probabilistic model of seismicity: Kamchatka earthquakes, J. Volcanol. Seismol. 4,6, 412–422, DOI: 10.1134/S0742046310060059.

    Article  Google Scholar 

  8. Catalli, F., M. Cocco, R. Console, and L. Chiaraluce (2008), Modelling seismicity rate changes during the 1997 Umbria-Marche sequence (central Italy) through a rate- and state-dependent model, J. Geophys. Res. 113, B11301, DOI: 10.1029/2007JB005356.

    Article  Google Scholar 

  9. Console, R., D. Pantosti, and G. D’Addezio (2002), Probabilistic approach to earthquake prediction, Ann. Geophys. 45,6, 723–731.

    Google Scholar 

  10. Console, R., M. Murru, F. Catalli, and G. Falcone (2007), Real time forecasts through an earthquake clustering model constrained by the rate- and-state constitutive law: Comparison with a purely stochastic ETAS model, Seismol. Res. Lett. 78,1, 49–56, DOI: 10.1785/gssrl.78.1.49.

    Article  Google Scholar 

  11. Cornell, C.A. (1968), Engineering seismic risk analysis, Bull. Seismol. Soc. Am. 58,5, 1583–1606.

    Google Scholar 

  12. Csikor, F.F., C. Motz, D. Weygand, M. Zaiser, and S. Zapperi (2007), Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale, Science 318,5848, 251–254, DOI: 10.1126/science. 1143719.

    Article  Google Scholar 

  13. Dahmen, K.A., Y. Ben-Zion, and J.T. Uhl (2009), Micromechanical model for deformation in solids with universal predictions for stress-strain curves and slip avalanches, Phys. Rev. Lett. 102,17, 175501, DOI: 10.1103/PhysRevLett.102.175501.

    Article  Google Scholar 

  14. Das, R., H.R. Wason, and M.L. Sharma (2011), Global regression relations for conversion of surface wave and body wave magnitudes to moment magnitude, Nat. Hazards 59,2, 801–810, DOI: 10.1007/s11069-011-9796-6.

    Article  Google Scholar 

  15. Evison, F. (1999), On the existence of earthquake precursors, Ann. Geophys. 42,5, 763–770.

    Google Scholar 

  16. Gardner, J.K., and L. Knopoff (1974), Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian? Bull. Seismol. Soc. Am. 64,5, 1363–1367.

    Google Scholar 

  17. Gusev, A.A. (1991), Intermagnitude relationship and asperity statistics, Pure Appl. Geophys. 136,4, 515–527, DOI: 10.1007/BF00878585.

    Article  Google Scholar 

  18. Hanks, T.C., and H. Kanamori (1979), A moment magnitude scale, J. Geophys. Res. 84,B5, 2348–2350, DOI: 10.1029/JB084iB05p02348.

    Article  Google Scholar 

  19. Hu, Y. (1990), Synthetical probability method in analysis of seismic dangerous degree [M], Seismological Press, Beijing, 1–8 (in Chinese).

    Google Scholar 

  20. Kagan, Y.Y. (2002), Seismic moment distribution revised: I. Statistical results, Geophys. J. Int. 148,3, 520–541, DOI: 10.1046/j.1365-246x.2002.01594.x.

    Article  Google Scholar 

  21. Kagan, Y.Y. (2005), Earthquake slip distribution: A statistical model, J. Geophys. Res. 110,5, B05S11, 1–15, DOI: 10.1029/2004JB003280.

    Google Scholar 

  22. Kagan, Y.Y. (2010), Earthquake size distribution: Power-law with exponent β ≡ 1/2?, Tectonophysics 490, 1–2, 103–114, DOI: 10.1016/j.tecto.2010.04.034.

  23. Kagan, Y.Y., and L. Knopoff (1981), Stochastic synthesis of earthquake catalogs, J. Geophys. Res. 86,B4, 2853–2862, DOI: 10.1029/JB086iB04p02853.

    Article  Google Scholar 

  24. Kagan, Y.Y., and F. Schoenberg (2001), Estimation of the upper cutoff parameter for the tapered Pareto distribution, J. Appl. Probab. 38A, 158–175, DOI: 10.1239/jap/1085496599.

    Article  Google Scholar 

  25. Kanamori, H. (1977), The energy release in great earthquakes, J. Geophys. Res. 82,20, 2981–2987, DOI: 10.1029/JB082i020p02981.

    Article  Google Scholar 

  26. Kanamori, H. (2004), The diversity of the physics of earthquakes, Proc. Japan Acad. B 80,7, 297–316, DOI: 10.2183/pjab.80.297.

    Article  Google Scholar 

  27. King, G.C.P., and M. Cocco (2001), Fault interaction by elastic stress changes: New clues from earthquake sequences, Adv. Geophys. 44, 1–38, DOI: 10.1016/S0065-2687(00)80006-0.

    Article  Google Scholar 

  28. Kolmogorov, A.N. (1974), Basic Concepts of Probability Theory, Nauka, Moscow, 200 pp. (in Russian).

    Google Scholar 

  29. Kuksenko, V.S., Kh.F. Makhmudov, and B.Ts. Manzhikov (2010), Damage accumulation model for solids and the catastrophy prediction for large-scale objects, J. Mining Sci. 46,4, 384–393, DOI: 10.1007/s10913-010-0048-z.

    Article  Google Scholar 

  30. Lavenda, B.H., and E. Cipollone (2000), Extreme value statistics and thermodynamics of earthquakes: aftershock sequences, Ann. Geofis. 43,5, 967–982, DOI: 10.4401/ag-3673.

    Google Scholar 

  31. Mezcua, J., J. Rueda, and R.M. García Blanco (2011), A new probabilistic seismic hazard study of Spain, Nat. Hazards 59, 2, DOI: 10.1007/s11069-011-9819-3.

    Article  Google Scholar 

  32. Mouayn, I., B.A. Tadili, L. Aït Brahim, M. Ramdani, M. Limouri, and N. Jabour (2004), Duration magnitude scale and site residuals for Northern Morocco, Pure Appl. Geophys. 161,5–6, 1061–1080, DOI: 10.1007/s00024-003-2497-7.

    Article  Google Scholar 

  33. Ogata, Y., and K. Katsura (2006), Immediate and updated forecasting of aftershock hazard, Geophys. Res. Lett. 33, L10305, DOI: 101029/2006GL025888.

    Article  Google Scholar 

  34. Ogata, Y., K. Katsura, and M. Tanemura (2003), Modelling heterogeneous spacetime occurrences of earthquakes and its residual analysis, J. Roy. Stat. Soc. C — Appl. Statist. 52,4, 499–509, DOI: 10.1111/1467-9876.00420.

    Article  Google Scholar 

  35. Papazachos, B.C., E.E. Papadimitriou, G.F. Karakaisis, and D.G. Panagiotopoulos (1997), Long-term earthquake prediction in the circum-Pacific convergent belt, Pure Appl. Geophys. 149,1, 173–217, DOI: 10.1007/BF00945167.

    Article  Google Scholar 

  36. Pei, T., C.-H. Zhou, Q.-L. Li, and J.-B. Chen (2002), Statistical analysis on temporal-spatial correlativity within temporal doublets of strong earthquakes in North China and its vicinity, Acta Seismol. Sinica 15,1, 56–62, DOI: 10.1007/s11589-002-0047-5.

    Article  Google Scholar 

  37. Pisarenko, V.F., and M.V. Rodkin (2009), The instability of the Mmax parameter and an alternative to its using, Izv. Phys. Solid Earth 45,12, 1081–1092, DOI: 10.1134/S1069351309120052.

    Article  Google Scholar 

  38. Purcaru, G., and H. Berckhemer (1978), A magnitude scale for very large earthquakes, Tectonophysics 49,3–4, 189–198, DOI: 10.1016/0040-1951(78)90177-4.

    Article  Google Scholar 

  39. Serpelloni, E., G. Vannucci, S. Pondrelli, A. Argnani, G. Casula, M. Anzidei, P. Baldi, and P. Gasperini (2007), Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data, Geophys. J. Int. 169,3, 1180–1200, DOI: 10.1111/j.1365-246X.2007.03367.x.

    Article  Google Scholar 

  40. Smirnov, V.B., A.V. Ponomarev, P. Bernard, and A.V. Patonin (2010), Regularities in transient modes in the seismic process according to the laboratory and natural modeling, Izv. Phys. Solid Earth 46,2, 104–135, DOI: 10.1134/S1069351310020023.

    Article  Google Scholar 

  41. Sobolev, G.A. (2011), Seismicity dynamics and earthquake predictability, Nat. Hazards Earth Syst. Sci. 11, 445–458, DOI: 10.5194/nhess-11-445-2011.

    Article  Google Scholar 

  42. Sobolev, G.A., and A.V. Ponomarev (2003), Earthquake Physics and Precursors, Nauka, Moscow, 270 pp. (in Russian).

    Google Scholar 

  43. Steacy, S., S.S. Nalbant, J. McCloskey, C. Nostro, O. Scotti, and D. Baumont (2005), Onto what planes should Coulomb stress perturbations be resolved?, J. Geophys. Res. 110, B05S15, DOI: 10.1029/2004JB003356.

    Article  Google Scholar 

  44. Sykes, L.R. (1983), Predicting great earthquakes. In: H. Kanamori, and E. Boschi (eds.), Earthquakes: Observation, Theory, and Interpretation, North-Holland Publ., Amsterdam, 398–435.

    Google Scholar 

  45. Thatcher, W., and T.C. Hanks (1973), Source parameters of southern Clifornia earthquakes, J. Geophys. Res. 78,35, 8547–8576, DOI: 10.1029/JB078i035p08547.

    Article  Google Scholar 

  46. Utsu, T. (2002), Relationships between magnitude scales. In: W.H.K. Lee, H. Kanamori, P.C. Jennings, and C. Kisslinger (eds.), International Handbook of Earthquake and Engineering Seismology, Vol. 81, Part A, Ser. “International Geophysics”, Academic Press, Amsterdam, 733–746, DOI: 10.1016/S0074-6142(02)80247-9.

    Chapter  Google Scholar 

  47. Wyss, M., and Y. Toya (2000), Is background seismicity produced at a stationary Poissonian rate?, Bull. Seismol. Soc. Am. 90,5, 1174–1187, DOI: 10.1785/011999158.

    Article  Google Scholar 

  48. Zavyalov, A.D. (2006), Intermediate Term Earthquake Prediction, Nauka, Moscow, 254 pp. (in Russian).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kamel Baddari.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baddari, K., Makdeche, S. & Bellalem, F. Probabilistic model to forecast earthquakes in the Zemmouri (Algeria) seismoactive area on the basis of moment magnitude scale distribution functions. Acta Geophys. 61, 60–83 (2013). https://doi.org/10.2478/s11600-012-0064-2

Download citation

Key words

  • probabilistic model
  • Zemmouri seismoactive area
  • seismic magnitude scale
  • prediction