Turbulence in mobile-bed streams

Abstract

This study is devoted to quantify the near-bed turbulence parameters in mobile-bed flows with bed-load transport. A reduction in near-bed velocity fluctuations due to the decrease of flow velocity relative to particle velocity of the transporting particles results in an excessive near-bed damping in Reynolds shear stress (RSS) distributions. The bed particles are associated with the momentum provided from the flow to maintain their motion overcoming the bed resistance. It leads to a reduction in RSS magnitude over the entire flow depth. In the logarithmic law, the von Kármán coefficient decreases in presence of bed-load transport. The turbulent kinetic energy budget reveals that for the bed-load transport, the pressure energy diffusion rate near the bed changes sharply to a negative magnitude, implying a gain in turbulence production. According to the quadrant analysis, sweep events in mobile-bed flows are the principal mechanism of bed-load transport. The universal probability density functions for turbulence parameters given by Bose and Dey have been successfully applied in mobile-bed flows.

This is a preview of subscription content, access via your institution.

References

  1. Balachandar, R., and F. Bhuiyan (2007), Higher-order moments of velocity fluctuations in an open-channel flow with large bottom roughness, J. Hydraul. Eng. 133,1, 77–87, DOI: 10.1061/(ASCE)0733-9429(2007) 133:1(77).

    Article  Google Scholar 

  2. Basset, A.B. (1888), A Treatise on Hydrodynamics, Cambridge University Press, Cambridge.

    Google Scholar 

  3. Bennett, S.J., and J.S. Bridge (1995), An experimental study of flow, bedload transport and bed topography under conditions of erosion and deposition and comparison with theoretical models, Sedimentology 42,1, 117–146, DOI: 10.1111/j.1365-3091.1995.tb01274.x.

    Article  Google Scholar 

  4. Bennett, S.J., J.S. Bridge, and J.L. Best (1998), Fluid and sediment dynamics of upper stage plane beds, J. Geophys. Res. 103,C1, 1239–1274, DOI: 10.1029/97JC02764.

    Article  Google Scholar 

  5. Bergeron, N.E., and P. Carbonneau (1999), The effect of sediment concentration on bedload roughness, Hydrol. Process. 13,16, 2583–2589, DOI: 10.1002/ (SICI)1099-1085(199911)13:16<2583::AID-HYP939>3.0.CO;2-S.

    Article  Google Scholar 

  6. Best, J. (1992), On the entrainment of sediment and initiation of bed defects: insights from recent developments within turbulent boundary layer research, Sedimentology 39,5, 797–811, DOI: 10.1111/j.1365-3091.1992.tb02154.x.

    Article  Google Scholar 

  7. Best, J., S. Bennett, J. Bridge, and M. Leeder (1997), Turbulence modulation and particle velocities over flat sand beds at low transport rates, J. Hydraul. Eng. 123,12, 1118–1129, DOI: 10.1061/(ASCE)0733-9429(1997)123: 12(1118).

    Article  Google Scholar 

  8. Blanckaert, K., and U. Lemmin (2006), Means of noise reduction in acoustic turbulence measurements, J. Hydraul. Res. 44,1, 13–17, DOI: 10.1080/ 00221686.2006.9521657.

    Article  Google Scholar 

  9. Bose, S.K., and S. Dey (2010), Universal probability distributions of turbulence in open channel flows, J. Hydraul. Res. 48,3, 388–394, DOI: 10.1080/ 00221686.2010.481832.

    Article  Google Scholar 

  10. Calomino, F., R. Gaudio, and A. Miglio (2004), Effect of bed-load concentration on friction factor in narrow channels. In: Proc. Second Int. Conf. Fluvial Hydraul. “River Flow 2004”, 23–5 June 2004, Napoli, Italy, Taylor and Francis, London, 279–285.

    Google Scholar 

  11. Campbell, L., I. McEwan, V. Nikora, D. Pokrajac, M. Gallagher, and C. Manes (2005), Bed-load effects on hydrodynamics of rough-bed open-channel flows, J. Hydraul. Eng. 131,7, 576–585, DOI: 10.1061/(ASCE)0733-9429 (2005)131:7(576).

    Article  Google Scholar 

  12. Carbonneau, P.E., and N.E. Bergeron (2000), The effect of bedload transport on mean and turbulent flow properties, Geomorphology 35,3–4, 267–278, DOI: 10.1016/S0169-555X(00)00046-5.

    Article  Google Scholar 

  13. Clifford, N.J., J. McClatchey, and J.R. French (1991), Measurements of turbulence in the benthic boundary layer over a gravel bed and comparison between acoustic measurements and predictions of the bedload transport of marine gravels, Sedimentology 38,1, 161–166, DOI: 10.1111/j.1365-3091.1991.tb01863.x.

    Article  Google Scholar 

  14. Crowe, C.T. (1993), Modelling turbulence in multiphase flows. In: W. Rodi and F. Martelli, (eds.), Engineering Turbulence Modelling and Experiments, Vol. 2, Elsevier, Amsterdam, 899–913.

    Google Scholar 

  15. Detert, M., V. Weitbrecht, and G.H. Jirka (2010), Laboratory measurements on turbulent pressure fluctuations in and above gravel beds, J. Hydraul. Eng. 136,10, 779–789, DOI: 10.1061/(ASCE)HY.1943-7900.0000251.

    Article  Google Scholar 

  16. Dey, S., and R.V. Raikar (2007), Characteristics of loose rough boundary streams at near-threshold, J. Hydraul. Eng. 133,3, 288–304., DOI: 10.1061/(ASCE) 0733-9429(2007)133:3(288).

    Article  Google Scholar 

  17. Dey, S., S. Sarkar, and L. Solari (2011), Near-bed turbulence characteristics at the entrainment threshold of sediment beds, J. Hydraul. Eng. 137,9, 945–958, DOI: 10.1061/(ASCE)HY.1943-7900.0000396.

    Article  Google Scholar 

  18. Drake, T.G., R.L. Shreve, W.E. Dietrich, P.J. Whiting, and L.B. Leopold (1988), Bedload transport of fine gravel observed by motion-picture photography, J. Fluid Mech. 192, 193–217, DOI: 10.1017/S0022112088001831.

    Article  Google Scholar 

  19. Dwivedi, A., B.W. Melville, and A.Y. Shamseldin (2010), Hydrodynamic forces generated on a spherical sediment particle during entrainment, J. Hydraul. Eng. 136,10, 756–769, DOI: 10.1061/(ASCE)HY.1943-7900.0000247.

    Article  Google Scholar 

  20. Dwivedi, A., B.W. Melville, A.Y. Shamseldin, and T.K. Guha (2011), Flow structures and hydrodynamic force during sediment entrainment, Water Resour. Res. 47, W01509, DOI: 10.1029/2010WR009089.

    Article  Google Scholar 

  21. Gallagher, M., I. McEwan, and V. Nikora (1999), The changing structure of turbulence over a self-stabilising sediment bed, Internal Rep. No. 21, Department of Engineering, University of Aberdeen, Aberdeen, U.K.

    Google Scholar 

  22. Gaudio, R., A. Miglio, and F. Calomino (2011), Friction factor and von Kármán’s κ in open channels with bed-load, J. Hydraul. Res. 49,2, 239–247, DOI: 10.1080/00221686.2011.561001.

    Article  Google Scholar 

  23. Gaudio, R., A. Miglio, and S. Dey (2010), Non-universality of von Kármán’s κ in fluvial streams, J. Hydraul. Res. 48,5, 658–663, DOI: 10.1080/00221686. 2010.507338.

    Article  Google Scholar 

  24. Gore, R.A., and C.T. Crowe (1991), Modulation of turbulence by a dispersed phase, J. Fluids Eng. 113,2, 304–307, DOI: 10.1115/1.2909497.

    Article  Google Scholar 

  25. Goring, D.G., and V.I. Nikora (2002), Despiking acoustic Doppler velocimeter data, J. Hydraul. Eng. 128,1, 117–126, DOI: 10.1061/(ASCE)0733-9429 (2002)128:1(117).

    Article  Google Scholar 

  26. Grass, A.J. (1970), Initial instability of fine bed sand, J. Hydraul. Div. 96,3, 619–632.

    Google Scholar 

  27. Grass, A.J. (1971), Structural features of turbulent flow over smooth and rough boundaries, J. Fluid Mech. 50,2, 233–255, DOI: 10.1017/S00221120 71002556.

    Article  Google Scholar 

  28. Gust, G., and J.B. Southard (1983), Effects of weak bed load on the universal law of the wall, J. Geophys. Res. 88,C10, 5939–5952, DOI: 10.1029/ JC088iC10p05939.

    Article  Google Scholar 

  29. Gyr, A., and A. Schmid (1997), Turbulent flows over smooth erodible sand beds in flumes, J. Hydraul. Res. 35,4, 525–544, DOI: 10.1080/0022168970949 8409.

    Article  Google Scholar 

  30. Heathershaw, A.D., and P.D. Thorne (1985), Sea-bed noises reveal role of turbulent bursting phenomenon in sediment transport by tidal currents, Nature 316,6026, 339–342, DOI: 10.1038/316339a0.

    Article  Google Scholar 

  31. Hetsroni, G. (1993), The effect of particles on the turbulence in a boundary layer. In: M.C. Roco(ed.), Particulate Two-Phase Flow, Butterworth-Heinemann, Boston, 244–264.

    Google Scholar 

  32. Kline, S.J., W.C. Reynolds, F.A. Schraub, and P.W. Runstadler (1967), The structure of turbulent boundary layers, J. Fluid Mech. 30,4, 741–773, DOI: 10.1017/S0022112067001740.

    Article  Google Scholar 

  33. Krogstad, P.Å., R.A. Antonia, and L.W.B. Browne (1992), Comparison between rough- and smooth-wall turbulent boundary layers, J. Fluid Mech. 245, 599–617, DOI: 10.1017/S0022112092000594.

    Article  Google Scholar 

  34. Lacey, R.W.J., and A.G. Roy (2008), Fine-scale characterization of the turbulent shear layer of an instream pebble cluster, J. Hydraul. Eng. 134,7, 925–936, DOI: 10.1061/(ASCE)0733-9429(2008)134:7(925).

    Article  Google Scholar 

  35. Lu, S.S., and W.W. Willmarth (1973), Measurements of the structure of the Reynolds stress in a turbulent boundary layer, J. Fluid Mech. 60,3, 481–511, DOI: 10.1017/S0022112073000315.

    Article  Google Scholar 

  36. Monin, A.S., and A.M. Yaglom (2007), Statistical Fluid Mechanics, Volume II: Mechanics of Turbulence, Dover Publications, New York, USA.

    Google Scholar 

  37. Nakagawa, H., and I. Nezu (1977), Prediction of the contributions to the Reynolds stress from bursting events in open-channel flows, J. Fluid Mech. 80,1, 99–128, DOI: 10.1017/S0022112077001554.

    Article  Google Scholar 

  38. Nelson, J.M., R.L. Shreve, S.R. McLean, and T.G. Drake (1995), Role of near-bed turbulence structure in bed load transport and bed form mechanics, Water Resour. Res. 31,8, 2071–2086, DOI: 10.1029/95WR00976.

    Article  Google Scholar 

  39. Nezu, I., and H. Nakagawa (1993), Turbulence in Open-Channel Flows, Balkema, Rotterdam.

    Google Scholar 

  40. Nikora, V.I., and D.G. Goring (1999), Effects of bed mobility on turbulence structure, NIWA Internal Rep. No. 48, National Institute of Water and Atmospheric Research, Christchurch, New Zealand.

    Google Scholar 

  41. Nikora, V., and D. Goring (2000), Flow turbulence over fixed and weakly mobile gravel beds, J. Hydraul. Eng. 126,9, 679–690, DOI: 10.1061/(ASCE)0733-9429(2000)126:9(679).

    Article  Google Scholar 

  42. Nikora, V., D. Goring, I. McEwan, and G. Griffiths (2001), Spatially averaged openchannel flow over rough bed, J. Hydraul. Eng. 127,2, 123–133, DOI: 10.1061/(ASCE)0733-9429(2001)127:2(123).

    Article  Google Scholar 

  43. Owen, P.R. (1964), Saltation of uniform grains in air, J. Fluid Mech. 20,2, 225–242, DOI: 10.1017/S0022112064001173.

    Article  Google Scholar 

  44. Papanicolaou, A.N., P. Diplas, C.L. Dancey, and M. Balakrishnan (2001), Surface roughness effects in near-bed turbulence: implications to sediment entrainment, J. Eng. Mech. 127,3, 211–218, DOI: 10.1061/(ASCE)0733-9399(2001)127:3(211).

    Article  Google Scholar 

  45. Parker, G., G. Seminara, and L. Solari (2003), Bed load at low Shields stress on arbitrarily sloping beds: Alternative entrainment formulation, Water Resour. Res. 39,7, 1183, DOI: 10.1029/2001WR001253.

    Article  Google Scholar 

  46. Pitlick, J. (1992), Flow resistance under conditions of intense gravel transport, Water Resour. Res. 28,3, 891–903, DOI: 10.1029/91WR02932.

    Article  Google Scholar 

  47. Pope, S.B. (2001), Turbulent Flows, Cambridge University Press, Cambridge.

    Google Scholar 

  48. Radice, A., and F. Ballio (2008), Double-average characteristics of sediment motion in one-dimensional bed load, Acta Geophys. 56,3, 654–668, DOI: 10.2478/s11600-008-0015-0.

    Article  Google Scholar 

  49. Raupach, M.R. (1981), Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers, J. Fluid Mech. 108, 363–382, DOI: 10.1017/S0022112081002164.

    Article  Google Scholar 

  50. Robinson, S.K. (1991), The kinematics of turbulent boundary layer structure, NASA TM-103859, Ames Research Center, Moffett Field, USA.

    Google Scholar 

  51. Sarkar, S., and S. Dey (2010), Double-averaging turbulence characteristics in flows over a gravel-bed, J. Hydraul. Res. 48,6, 801–809, DOI: 10.1080/ 00221686.2010.526764.

    Article  Google Scholar 

  52. Schmid, A. (1985), Wandnahe turbulente bewegungsabläufe und ihre bedeutung für die riffelbildung, Ph.D. Thesis, Report R22-85, Institute for Hydromechanics and Water Resources Management, ETH Zürich, Switzerland.

    Google Scholar 

  53. Smith, J.D., and S.R. McLean (1977), Spatially averaged flow over a wavy surface, J. Geophys. Res.: Oceans 82,12, 1735–1746, DOI: 10.1029/JC082 i012p01735.

    Article  Google Scholar 

  54. Song, T., Y.M. Chiew, and C.O. Chin (1998), Effect of bed-load movement on flow friction factor, J. Hydraul. Eng. 124,2, 165–175, DOI: 10.1061/(ASCE) 0733-9429(1998)124:2(165).

    Article  Google Scholar 

  55. Song, T., W.H. Graf, and U. Lemmin (1994), Uniform flow in open channels with movable gravel bed, J. Hydraul. Res. 32,6, 861–876, DOI: 10.1080/ 00221689409498695.

    Article  Google Scholar 

  56. Sumer, B.M., L.H.C. Chua, N.-S. Cheng, and J. Fredsøe (2003), Influence of turbulence on bed load sediment transport, J. Hydraul. Eng. 129,8, 585–596, DOI: 10.1061/(ASCE)0733-9429(2003)129:8(585).

    Article  Google Scholar 

  57. van Rijn, L.C. (1984), Sediment transport. Part I: bed-load transport, J. Hydraul. Eng. 110,10, 1431–1456, DOI: 10.1061/(ASCE)0733-9429(1984)110: 10(1431).

    Article  Google Scholar 

  58. Wang, Z., and P. Larsen (1994), Turbulent structure of water and clay suspensions with bed load, J. Hydraul. Eng. 120,5, 577–600, DOI: 10.1061/(ASCE) 0733-9429(1994)120:5(577).

    Article  Google Scholar 

  59. Yang, Y., and M. Hirano (1995), Discussion on’ Uniform flow in open-channel with movable gravel bed’ by T. Song, W.H. Graf, and U. Lemmin, J. Hydraul. Res. 33,6, 877–880, DOI: 10.1080/00221689509498557.

    Article  Google Scholar 

  60. Yang, S.Q., S.K. Tan, and S.Y. Lim (2004), Velocity distribution and dipphenomenon in smooth uniform open channel flows, J. Hydraul. Eng. 130,12, 1179–1186, DOI: 10.1061/(ASCE)0733-9429(2004)130:12(1179).

    Article  Google Scholar 

  61. Yeganeh-Bakhtiary, A., H. Gotoh, and T. Sakai (2000), Applicability of Euler-Lagrange coupling multiphase-flow model to bed-load transport under high bottom shear, J. Hydraul. Res. 38,5, 389–398, DOI: 10.1080/0022168 0009498320.

    Article  Google Scholar 

  62. Yeganeh-Bakhtiary, A., B. Shabani, H. Gotoh, and S.S.Y. Wang (2009), A threedimensional distinct element model for bed-load transport, J. Hydraul. Res. 47,2, 203–212, DOI: 10.3826/jhr.2009.3168.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Subhasish Dey.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dey, S., Das, R., Gaudio, R. et al. Turbulence in mobile-bed streams. Acta Geophys. 60, 1547–1588 (2012). https://doi.org/10.2478/s11600-012-0055-3

Download citation

Key words

  • flow characteristics
  • hydraulics
  • open-channel flow
  • sediment transport
  • stream beds
  • turbulent flow