Advertisement

Acta Geophysica

, Volume 60, Issue 6, pp 1547–1588 | Cite as

Turbulence in mobile-bed streams

  • Subhasish DeyEmail author
  • Ratul Das
  • Roberto Gaudio
  • Sujit K. Bose
Research Article

Abstract

This study is devoted to quantify the near-bed turbulence parameters in mobile-bed flows with bed-load transport. A reduction in near-bed velocity fluctuations due to the decrease of flow velocity relative to particle velocity of the transporting particles results in an excessive near-bed damping in Reynolds shear stress (RSS) distributions. The bed particles are associated with the momentum provided from the flow to maintain their motion overcoming the bed resistance. It leads to a reduction in RSS magnitude over the entire flow depth. In the logarithmic law, the von Kármán coefficient decreases in presence of bed-load transport. The turbulent kinetic energy budget reveals that for the bed-load transport, the pressure energy diffusion rate near the bed changes sharply to a negative magnitude, implying a gain in turbulence production. According to the quadrant analysis, sweep events in mobile-bed flows are the principal mechanism of bed-load transport. The universal probability density functions for turbulence parameters given by Bose and Dey have been successfully applied in mobile-bed flows.

Key words

flow characteristics hydraulics open-channel flow sediment transport stream beds turbulent flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balachandar, R., and F. Bhuiyan (2007), Higher-order moments of velocity fluctuations in an open-channel flow with large bottom roughness, J. Hydraul. Eng. 133,1, 77–87, DOI: 10.1061/(ASCE)0733-9429(2007) 133:1(77).CrossRefGoogle Scholar
  2. Basset, A.B. (1888), A Treatise on Hydrodynamics, Cambridge University Press, Cambridge.Google Scholar
  3. Bennett, S.J., and J.S. Bridge (1995), An experimental study of flow, bedload transport and bed topography under conditions of erosion and deposition and comparison with theoretical models, Sedimentology 42,1, 117–146, DOI: 10.1111/j.1365-3091.1995.tb01274.x.CrossRefGoogle Scholar
  4. Bennett, S.J., J.S. Bridge, and J.L. Best (1998), Fluid and sediment dynamics of upper stage plane beds, J. Geophys. Res. 103,C1, 1239–1274, DOI: 10.1029/97JC02764.CrossRefGoogle Scholar
  5. Bergeron, N.E., and P. Carbonneau (1999), The effect of sediment concentration on bedload roughness, Hydrol. Process. 13,16, 2583–2589, DOI: 10.1002/ (SICI)1099-1085(199911)13:16<2583::AID-HYP939>3.0.CO;2-S.CrossRefGoogle Scholar
  6. Best, J. (1992), On the entrainment of sediment and initiation of bed defects: insights from recent developments within turbulent boundary layer research, Sedimentology 39,5, 797–811, DOI: 10.1111/j.1365-3091.1992.tb02154.x.CrossRefGoogle Scholar
  7. Best, J., S. Bennett, J. Bridge, and M. Leeder (1997), Turbulence modulation and particle velocities over flat sand beds at low transport rates, J. Hydraul. Eng. 123,12, 1118–1129, DOI: 10.1061/(ASCE)0733-9429(1997)123: 12(1118).CrossRefGoogle Scholar
  8. Blanckaert, K., and U. Lemmin (2006), Means of noise reduction in acoustic turbulence measurements, J. Hydraul. Res. 44,1, 13–17, DOI: 10.1080/ 00221686.2006.9521657.CrossRefGoogle Scholar
  9. Bose, S.K., and S. Dey (2010), Universal probability distributions of turbulence in open channel flows, J. Hydraul. Res. 48,3, 388–394, DOI: 10.1080/ 00221686.2010.481832.CrossRefGoogle Scholar
  10. Calomino, F., R. Gaudio, and A. Miglio (2004), Effect of bed-load concentration on friction factor in narrow channels. In: Proc. Second Int. Conf. Fluvial Hydraul. “River Flow 2004”, 23–5 June 2004, Napoli, Italy, Taylor and Francis, London, 279–285.Google Scholar
  11. Campbell, L., I. McEwan, V. Nikora, D. Pokrajac, M. Gallagher, and C. Manes (2005), Bed-load effects on hydrodynamics of rough-bed open-channel flows, J. Hydraul. Eng. 131,7, 576–585, DOI: 10.1061/(ASCE)0733-9429 (2005)131:7(576).CrossRefGoogle Scholar
  12. Carbonneau, P.E., and N.E. Bergeron (2000), The effect of bedload transport on mean and turbulent flow properties, Geomorphology 35,3–4, 267–278, DOI: 10.1016/S0169-555X(00)00046-5.CrossRefGoogle Scholar
  13. Clifford, N.J., J. McClatchey, and J.R. French (1991), Measurements of turbulence in the benthic boundary layer over a gravel bed and comparison between acoustic measurements and predictions of the bedload transport of marine gravels, Sedimentology 38,1, 161–166, DOI: 10.1111/j.1365-3091.1991.tb01863.x.CrossRefGoogle Scholar
  14. Crowe, C.T. (1993), Modelling turbulence in multiphase flows. In: W. Rodi and F. Martelli, (eds.), Engineering Turbulence Modelling and Experiments, Vol. 2, Elsevier, Amsterdam, 899–913.Google Scholar
  15. Detert, M., V. Weitbrecht, and G.H. Jirka (2010), Laboratory measurements on turbulent pressure fluctuations in and above gravel beds, J. Hydraul. Eng. 136,10, 779–789, DOI: 10.1061/(ASCE)HY.1943-7900.0000251.CrossRefGoogle Scholar
  16. Dey, S., and R.V. Raikar (2007), Characteristics of loose rough boundary streams at near-threshold, J. Hydraul. Eng. 133,3, 288–304., DOI: 10.1061/(ASCE) 0733-9429(2007)133:3(288).CrossRefGoogle Scholar
  17. Dey, S., S. Sarkar, and L. Solari (2011), Near-bed turbulence characteristics at the entrainment threshold of sediment beds, J. Hydraul. Eng. 137,9, 945–958, DOI: 10.1061/(ASCE)HY.1943-7900.0000396.CrossRefGoogle Scholar
  18. Drake, T.G., R.L. Shreve, W.E. Dietrich, P.J. Whiting, and L.B. Leopold (1988), Bedload transport of fine gravel observed by motion-picture photography, J. Fluid Mech. 192, 193–217, DOI: 10.1017/S0022112088001831.CrossRefGoogle Scholar
  19. Dwivedi, A., B.W. Melville, and A.Y. Shamseldin (2010), Hydrodynamic forces generated on a spherical sediment particle during entrainment, J. Hydraul. Eng. 136,10, 756–769, DOI: 10.1061/(ASCE)HY.1943-7900.0000247.CrossRefGoogle Scholar
  20. Dwivedi, A., B.W. Melville, A.Y. Shamseldin, and T.K. Guha (2011), Flow structures and hydrodynamic force during sediment entrainment, Water Resour. Res. 47, W01509, DOI: 10.1029/2010WR009089.CrossRefGoogle Scholar
  21. Gallagher, M., I. McEwan, and V. Nikora (1999), The changing structure of turbulence over a self-stabilising sediment bed, Internal Rep. No. 21, Department of Engineering, University of Aberdeen, Aberdeen, U.K.Google Scholar
  22. Gaudio, R., A. Miglio, and F. Calomino (2011), Friction factor and von Kármán’s κ in open channels with bed-load, J. Hydraul. Res. 49,2, 239–247, DOI: 10.1080/00221686.2011.561001.CrossRefGoogle Scholar
  23. Gaudio, R., A. Miglio, and S. Dey (2010), Non-universality of von Kármán’s κ in fluvial streams, J. Hydraul. Res. 48,5, 658–663, DOI: 10.1080/00221686. 2010.507338.CrossRefGoogle Scholar
  24. Gore, R.A., and C.T. Crowe (1991), Modulation of turbulence by a dispersed phase, J. Fluids Eng. 113,2, 304–307, DOI: 10.1115/1.2909497.CrossRefGoogle Scholar
  25. Goring, D.G., and V.I. Nikora (2002), Despiking acoustic Doppler velocimeter data, J. Hydraul. Eng. 128,1, 117–126, DOI: 10.1061/(ASCE)0733-9429 (2002)128:1(117).CrossRefGoogle Scholar
  26. Grass, A.J. (1970), Initial instability of fine bed sand, J. Hydraul. Div. 96,3, 619–632.Google Scholar
  27. Grass, A.J. (1971), Structural features of turbulent flow over smooth and rough boundaries, J. Fluid Mech. 50,2, 233–255, DOI: 10.1017/S00221120 71002556.CrossRefGoogle Scholar
  28. Gust, G., and J.B. Southard (1983), Effects of weak bed load on the universal law of the wall, J. Geophys. Res. 88,C10, 5939–5952, DOI: 10.1029/ JC088iC10p05939.CrossRefGoogle Scholar
  29. Gyr, A., and A. Schmid (1997), Turbulent flows over smooth erodible sand beds in flumes, J. Hydraul. Res. 35,4, 525–544, DOI: 10.1080/0022168970949 8409.CrossRefGoogle Scholar
  30. Heathershaw, A.D., and P.D. Thorne (1985), Sea-bed noises reveal role of turbulent bursting phenomenon in sediment transport by tidal currents, Nature 316,6026, 339–342, DOI: 10.1038/316339a0.CrossRefGoogle Scholar
  31. Hetsroni, G. (1993), The effect of particles on the turbulence in a boundary layer. In: M.C. Roco(ed.), Particulate Two-Phase Flow, Butterworth-Heinemann, Boston, 244–264.Google Scholar
  32. Kline, S.J., W.C. Reynolds, F.A. Schraub, and P.W. Runstadler (1967), The structure of turbulent boundary layers, J. Fluid Mech. 30,4, 741–773, DOI: 10.1017/S0022112067001740.CrossRefGoogle Scholar
  33. Krogstad, P.Å., R.A. Antonia, and L.W.B. Browne (1992), Comparison between rough- and smooth-wall turbulent boundary layers, J. Fluid Mech. 245, 599–617, DOI: 10.1017/S0022112092000594.CrossRefGoogle Scholar
  34. Lacey, R.W.J., and A.G. Roy (2008), Fine-scale characterization of the turbulent shear layer of an instream pebble cluster, J. Hydraul. Eng. 134,7, 925–936, DOI: 10.1061/(ASCE)0733-9429(2008)134:7(925).CrossRefGoogle Scholar
  35. Lu, S.S., and W.W. Willmarth (1973), Measurements of the structure of the Reynolds stress in a turbulent boundary layer, J. Fluid Mech. 60,3, 481–511, DOI: 10.1017/S0022112073000315.CrossRefGoogle Scholar
  36. Monin, A.S., and A.M. Yaglom (2007), Statistical Fluid Mechanics, Volume II: Mechanics of Turbulence, Dover Publications, New York, USA.Google Scholar
  37. Nakagawa, H., and I. Nezu (1977), Prediction of the contributions to the Reynolds stress from bursting events in open-channel flows, J. Fluid Mech. 80,1, 99–128, DOI: 10.1017/S0022112077001554.CrossRefGoogle Scholar
  38. Nelson, J.M., R.L. Shreve, S.R. McLean, and T.G. Drake (1995), Role of near-bed turbulence structure in bed load transport and bed form mechanics, Water Resour. Res. 31,8, 2071–2086, DOI: 10.1029/95WR00976.CrossRefGoogle Scholar
  39. Nezu, I., and H. Nakagawa (1993), Turbulence in Open-Channel Flows, Balkema, Rotterdam.Google Scholar
  40. Nikora, V.I., and D.G. Goring (1999), Effects of bed mobility on turbulence structure, NIWA Internal Rep. No. 48, National Institute of Water and Atmospheric Research, Christchurch, New Zealand.Google Scholar
  41. Nikora, V., and D. Goring (2000), Flow turbulence over fixed and weakly mobile gravel beds, J. Hydraul. Eng. 126,9, 679–690, DOI: 10.1061/(ASCE)0733-9429(2000)126:9(679).CrossRefGoogle Scholar
  42. Nikora, V., D. Goring, I. McEwan, and G. Griffiths (2001), Spatially averaged openchannel flow over rough bed, J. Hydraul. Eng. 127,2, 123–133, DOI: 10.1061/(ASCE)0733-9429(2001)127:2(123).CrossRefGoogle Scholar
  43. Owen, P.R. (1964), Saltation of uniform grains in air, J. Fluid Mech. 20,2, 225–242, DOI: 10.1017/S0022112064001173.CrossRefGoogle Scholar
  44. Papanicolaou, A.N., P. Diplas, C.L. Dancey, and M. Balakrishnan (2001), Surface roughness effects in near-bed turbulence: implications to sediment entrainment, J. Eng. Mech. 127,3, 211–218, DOI: 10.1061/(ASCE)0733-9399(2001)127:3(211).CrossRefGoogle Scholar
  45. Parker, G., G. Seminara, and L. Solari (2003), Bed load at low Shields stress on arbitrarily sloping beds: Alternative entrainment formulation, Water Resour. Res. 39,7, 1183, DOI: 10.1029/2001WR001253.CrossRefGoogle Scholar
  46. Pitlick, J. (1992), Flow resistance under conditions of intense gravel transport, Water Resour. Res. 28,3, 891–903, DOI: 10.1029/91WR02932.CrossRefGoogle Scholar
  47. Pope, S.B. (2001), Turbulent Flows, Cambridge University Press, Cambridge.Google Scholar
  48. Radice, A., and F. Ballio (2008), Double-average characteristics of sediment motion in one-dimensional bed load, Acta Geophys. 56,3, 654–668, DOI: 10.2478/s11600-008-0015-0.CrossRefGoogle Scholar
  49. Raupach, M.R. (1981), Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers, J. Fluid Mech. 108, 363–382, DOI: 10.1017/S0022112081002164.CrossRefGoogle Scholar
  50. Robinson, S.K. (1991), The kinematics of turbulent boundary layer structure, NASA TM-103859, Ames Research Center, Moffett Field, USA.Google Scholar
  51. Sarkar, S., and S. Dey (2010), Double-averaging turbulence characteristics in flows over a gravel-bed, J. Hydraul. Res. 48,6, 801–809, DOI: 10.1080/ 00221686.2010.526764.CrossRefGoogle Scholar
  52. Schmid, A. (1985), Wandnahe turbulente bewegungsabläufe und ihre bedeutung für die riffelbildung, Ph.D. Thesis, Report R22-85, Institute for Hydromechanics and Water Resources Management, ETH Zürich, Switzerland.Google Scholar
  53. Smith, J.D., and S.R. McLean (1977), Spatially averaged flow over a wavy surface, J. Geophys. Res.: Oceans 82,12, 1735–1746, DOI: 10.1029/JC082 i012p01735.CrossRefGoogle Scholar
  54. Song, T., Y.M. Chiew, and C.O. Chin (1998), Effect of bed-load movement on flow friction factor, J. Hydraul. Eng. 124,2, 165–175, DOI: 10.1061/(ASCE) 0733-9429(1998)124:2(165).CrossRefGoogle Scholar
  55. Song, T., W.H. Graf, and U. Lemmin (1994), Uniform flow in open channels with movable gravel bed, J. Hydraul. Res. 32,6, 861–876, DOI: 10.1080/ 00221689409498695.CrossRefGoogle Scholar
  56. Sumer, B.M., L.H.C. Chua, N.-S. Cheng, and J. Fredsøe (2003), Influence of turbulence on bed load sediment transport, J. Hydraul. Eng. 129,8, 585–596, DOI: 10.1061/(ASCE)0733-9429(2003)129:8(585).CrossRefGoogle Scholar
  57. van Rijn, L.C. (1984), Sediment transport. Part I: bed-load transport, J. Hydraul. Eng. 110,10, 1431–1456, DOI: 10.1061/(ASCE)0733-9429(1984)110: 10(1431).CrossRefGoogle Scholar
  58. Wang, Z., and P. Larsen (1994), Turbulent structure of water and clay suspensions with bed load, J. Hydraul. Eng. 120,5, 577–600, DOI: 10.1061/(ASCE) 0733-9429(1994)120:5(577).CrossRefGoogle Scholar
  59. Yang, Y., and M. Hirano (1995), Discussion on’ Uniform flow in open-channel with movable gravel bed’ by T. Song, W.H. Graf, and U. Lemmin, J. Hydraul. Res. 33,6, 877–880, DOI: 10.1080/00221689509498557.CrossRefGoogle Scholar
  60. Yang, S.Q., S.K. Tan, and S.Y. Lim (2004), Velocity distribution and dipphenomenon in smooth uniform open channel flows, J. Hydraul. Eng. 130,12, 1179–1186, DOI: 10.1061/(ASCE)0733-9429(2004)130:12(1179).CrossRefGoogle Scholar
  61. Yeganeh-Bakhtiary, A., H. Gotoh, and T. Sakai (2000), Applicability of Euler-Lagrange coupling multiphase-flow model to bed-load transport under high bottom shear, J. Hydraul. Res. 38,5, 389–398, DOI: 10.1080/0022168 0009498320.CrossRefGoogle Scholar
  62. Yeganeh-Bakhtiary, A., B. Shabani, H. Gotoh, and S.S.Y. Wang (2009), A threedimensional distinct element model for bed-load transport, J. Hydraul. Res. 47,2, 203–212, DOI: 10.3826/jhr.2009.3168.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Subhasish Dey
    • 1
    Email author
  • Ratul Das
    • 1
  • Roberto Gaudio
    • 2
  • Sujit K. Bose
    • 3
  1. 1.Department of Civil EngineeringIndian Institute of TechnologyKharagpurIndia
  2. 2.Dipartimento di Difesa del Suolo “V. Marone”Università della CalabriaRende (CS)Italy
  3. 3.Centre for Theoretical StudiesIndian Institute of TechnologyKharagpurIndia

Personalised recommendations