Asimakopoulos, D.N., C.G. Helmis, and J. Michopoulos (2004), Evaluation of SODAR method for the determination of the atmospheric boundary layer mixing height, Meteorol. Atmos. Phys.
85,1–3, 85–92, DOI: 10.1007/s00703-003-0036-9.
Google Scholar
Boers, R., and S.H. Melfi (1987), Cold air outbreak during MASEX: Lidar observations and boundary-layer model test, Bound.-Lay. Meteorol.
39,1–2, 41–51, DOI: 10.1007/BF00121864.
Article
Google Scholar
Brooks, I.M. (2003), Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles, J. Atmos. Ocean. Tech.
20,8, 1092–1105, DOI: 10.1175/1520-0426(2003)020〈1092:FBLTAO〉2.0.CO;2.
Article
Google Scholar
De Tomassi, F., and M.R. Perrone (2006), PBL and dust layer seasonal evolution by lidar and radiosounding measurements over a peninsular site, Atmos. Res.
80,1, 86–103, DOI: 10.1016/j.atmosres.2005.06.010.
Article
Google Scholar
Emeis, S. (2010), Surface-Based Remote Sensing of the Atmospheric Boundary Layer, Atmospheric and Oceanographic Sciences Library, Vol. 40, Springer, Dordrecht, 200 pp., DOI: 10.1007/978-90-481-9340-0.
Google Scholar
Eresmaa, N., A. Karppinen, S.M. Joffre, J. Räsänen, and H. Talvitie (2006), Mixing height determination by ceilometer, Atmos. Chem. Phys.
6,6, 1485–1493, DOI: 10.5194/acp-6-1485-2006.
Article
Google Scholar
Heese, B., H. Flentje, D. Althausen, A. Ansmann, and S. Frey (2010), Ceilometer lidar comparison: backscatter coefficient retrieval and signal-to-noise ratio determination, Atmos. Meas. Tech.
3,6, 1763–1770, DOI: 10.5194/amt-3-1763-2010.
Article
Google Scholar
Kłysik, K., and K. Fortuniak (1999), Temporal and spatial characteristics of the urban heat island of Łódź, Poland, Atmos. Environ.
33,24–25, 3885–3895, DOI: 10.1016/S1352-2310(99)00131-4.
Google Scholar
Kovalev, V.A., and W.E. Eichinger (2004), Elastic Lidar: Theory, Practice, and Analysis Methods, John Wiley & Sons Inc., DOI: 10.1002/0471643173.
Markowicz, K.M., T. Zieliński, A. Pietruczuk, M. Posyniak, O. Zawadzka, P. Makuch, I.S. Stachlewska, A.K. Jagodnicka, T. Petelski, W. Kumala, P. Sobolewski, and T. Stacewicz (2012), Remote sensing measurements of the volcanic ash plume over Poland in April 2010, Atmos. Environ.
48, 66–75, DOI: 10.1016/j.atmosenv.2011.07.015.
Article
Google Scholar
Matthias, V., and J. Bösenberg (2002), Aerosol climatology for the planetary boundary layer derived from regular lidar measurements, Atmos. Res.
63,3–4, 221–245, DOI: 10.1016/S0169-8095(02)00043-1.
Article
Google Scholar
O’Connor, E.J., A.J. Illingworth, and R.J. Hogan (2004), A technique for autocalibration of cloud lidar, J. Atmos. Ocean. Tech.
21,5, 777–786, DOI: 10.1175/1520-0426(2004)021〈0777:ATFAOC〉2.0.CO;2.
Article
Google Scholar
Piadlowski, M., and I.S. Stachlewska (2012), On distortion in the CHM15k ceilometer signals. In:
Proc. 26th ILRC International Laser Radar Conference, 25–29 July 2012, Porto Heli, Greece, 85–88.
Piądłowski, M.J. (2010), Long-term ceilometer observations of the planetary boundary layer height over Warsaw, M.Sc. Thesis, 38 pp.
Piironen, A.K., and E.W. Eloranta (1995), Convective boundary layer mean depths and cloud geometrical properties obtained from volume imaging lidar data, J. Geophys. Res.
100,D12, 25569–25576, DOI: 10.1029/94JD02604.
Article
Google Scholar
Seibert, P., F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier (2000), Review and intercomparison of operational methods for the determination of mixing height, Atmos. Environ.
34,7, 1001–1027, DOI: 10.1016/S1352-2310(99)00349-0.
Article
Google Scholar
Seidel, D.J., C.O. Ao, and K. Li (2010), Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis, J. Geophys. Res.
115, D16113, DOI: 10.1029/2009JD013680.
Article
Google Scholar
Sicard, M., C. Pérez, F. Rocadenbosch, J.M. Baldasano, and G. García-Vizcaino (2006), Mixed-layer depth determination in the Barcelona coastal area from regular lidar measurements: methods, results and limitations, Bound.-Layer Meteorol.
119,1, 135–157, DOI: 10.1007/s10546-005-9005-9.
Article
Google Scholar
Sokół, P. (2012), Observations of atmospheric boundary layer structure during the transition from nighttime to daytime conditions, M.Sc. Thesis, Faculty of Physics, University of Warsaw, 45 pp. (in Polish).
Sorbjan, Z. (1989), Structure of the Atmospheric Boundary Layer, Prentice Hall, Englewood Cliffs.
Google Scholar
Stachlewska, I.S., and C. Ritter (2010), On retrieval of lidar extinction profiles using Two-Stream and Raman techniques, Atmos. Chem. Phys.
10,6, 2813–2824, DOI: 10.5194/acp-10-2813-2010.
Article
Google Scholar
Stachlewska, I.S., Markowicz K.M., and M. Piadlowski (2010), On forward Klett’s inversion of ceilometer signals. In:
Proc. 25th ILRC International Laser Radar Conference, 5–9 July 2010, St. Petersburg, Russia, 1154–1157.
Tsaknakis, G., A. Papayannis, P. Kokkalis, V. Amiridis, H.D. Kambezidis, R.E. Mamouri, G. Georgoussis, and G. Avdikos (2011), Inter-comparison of lidar and ceilometer retrievals for aerosol and Planetary Boundary Layer profiling over Athens, Greece, Atmos. Meas. Tech.
4,6, 1261–1273, DOI: 10.5194/amt-4-1261-2011.
Article
Google Scholar
Welton, E.J., K.J. Voss, H.R. Gordon, H. Maring, A. Smirnov, B. Holben, B. Schmid, J.M. Livingston, P.A. Durkee, P. Formenti, and M.O. Andreae (2000), Ground-based lidar measurements of aerosols during ACE-2: Instrument description, results, and comparisons with other ground-based and airborne measurements, Tellus B
52,2, 636–651, DOI: 10.1034/j.1600-0889.2000.00025.x.
Article
Google Scholar
Wiegner, M., and A. Geiss (2012), Aerosol profiling with the JenOptik ceilometer CHM15kx, Atmos. Meas. Tech. Discuss.
5, 3395–3430, DOI: 10.5194/amtd-5-3395-2012.
Article
Google Scholar